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In order to facilitate the decomposition of experimental susceptibility data into its various contributions the diamagnetic
susceptibility (Xdia) of 31 metals with Z:::;; 49 has been calculated from self-consistent charge densities. In dealing with binary
alloys it is often assumed that Xdia varies linearly with concentration between the values of the PJIre metals. Using
selfconsistent charge densiti~s for eu-Rh it is shown that this assumption is valid in this alloy system.

1. Introduction

In discussing experimental susceptibility data it
is often desirable or necessary to eliminate the
diamagnetic susceptibility Xdia in order to obtain
information about the other contributions to the
total susceptibility (e.g. refs. [1,2]). Because of the
lack of calculations of Xdia for metals various
approximations for this part of the susceptibility,
which are based on the assumption that only the
tightly bound (ion core) electrons contribute to
Xdia' have been applied in the past. The approxi­
mations include the use of experimental magneto­
chemical diamagnetic susceptibilities of ions [3],
or of theoretical diamagnetic susceptibilities for
free atoms or ions, which are deduced from the
results of either relativistic or nonrelativistic
Hartree-Fock-Slater or Hartree-Fock calcula­
tions [4-6] using the equation:

Xdia = - e62N~ L (r?), (1)
me i

where the sum runs over the various atomic
orbitals. Since the charge distribution in metals
differs from that in free atoms or ions, these
approximations cannot provide reliable values for

Xdia of metals. Even if the charge density in metals
is known it is not possible to calculate Xdia by
means of eq. (1) because it is not dear which
electrons are to be considered as core electrons.
These problems have been treated in a recent
paper by Benkowitsch and Winter [7] who showed
that all electrons within the Wigner-Seitz cell
must be included in an expression for Xdia analo­
gous to that of eq. (1). Based on this result and
using the charge distributions calculated by
Moruzzi et al. [8] the diamagnetic susceptibilities
of 31 metals have been calculated (section 2).

In binary alloys the concentration dependent
diamagnetic susceptibility is often assumed to vary
linearly between the values of the pure metals.·· By
calculating the partial diamagnetic susceptibilities
of eu-Rh it is shown, that this assumption should
in general be justified to a high degree of accuracy
(section 3).

2. Diamagnetic susceptibility of metals

Recently Benkowitsch and Winter [7] de­
veloped a real-space method for the calculation of
orbital susceptibilities of metals. This method im-
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(3)

plies a partition of the total orbital susceptibility
into three contributions. Two of them correspond
to the conventional van Vleck and Landau contri­
butions while the third one is analogous to the
diamagnetic susceptibility of free atoms and ions
(eq. (1». For the longitudinal (z-)component of
the diamagnetic susceptibility tensor they find:

1 e 2N
XZ

. =--Ajf(E)dE
dla 'TTVws 2mc2

x f d3r Im[Gf ( r, r, E)]( X 2 +Y2 ) , (2)
Vws

where G f is the retarded one-particle Green's
function, r is the position vector restricted to the
Wigner-Seitz cell of volume Vws and f( E) is the
Fermi distribution function. Note that Xdia con­
tains contributions from all electrons in the
Wigner-Seitz cell because the energy integration
extends over all occupied states. Obviously there is
no restriction to core electrons as one could expect
from eq. (1). In the case of cubic symmetry only
the longitudinal component of the diamagnetic'
susceptibility remains. Using the total electron
density n(r) eq. (2) can therefore be simply ex­
pressed by:

e
2
NA f () 2 3Xdia = - --2 n r r d r.

6mc V ws

In the present work charge densities per) = en(r)
given by Nforuzzi et al. [8] have been used to
calculate Xdia for 31 pure metals with Z ~ 49
(table 1). These densities result from selfconsistent
KKR-band structure calculations which were per­
formed in a nonrelativistic manner and included
exchange and correlation effects in the framework
of local density theory. For metals possessing other
than fcc or bcc structure the fcc structure was
assumed by Moruzzi et al. (indicated by a" *" in
table 1). For hcp metals this should affect Xdia

only slightly. Note that because the self-consistent
potentials have been determined by minimizing
the total energy, the theoretical lattice const'ants
differ somewhat from the experimental ones.
Compared with the result from section 3 for Cu
which is based on the proper lattice constant this
difference (about 1%) leads to an uncertainty for
Xdia of the same order of magnitude. As all metals

Table 1
Diamagnetic Susceptibilities of 31 Metals. (1) and (2): Element
and atomic number; (3): Crystal structure of the metal. A "*"
indicates that this structure is not the true one, but the struc-
ture assumed by Moruzzi et al. [8] in their calculation; (4):
Diamagnetic susceptibility of the free ion (1 +) [6]; (5): Dia-
magnetic susceptibility of the metal (present work); (6): Dia-
magnetic susceptibility of the free atom [5]. All susceptibilities
are in 10- 6 cm3jmol. To obtain values in SI-units (m3jmol)
multiply by the factor 4'IT X 10 - 6

(1) (2) (3) (4) (5) (6)

Li 3 bcc -0.7 -5.9 -14.8
Be 4 fcc* -5.7 -13.7
Na 11 bcc -4.8 -12.7 -21.5
Mg 12 fcc* -14.8 -23.4
Al 13 fcc -14.0 -15.8 -26.4
K 19 bce -14.3 -27.2 -.-40.3
Ca 20 fcc -28.0 -44.5
Sc 21 fcc* -25.3 -41.8
Ti 22 fc~* -23.1 -39.4
V 23 bcc -21.6 -37.3
Cr 24 bcc -20.8 -31.3
Mn 25 fec* -20.3 -33.7
Fe 26 bcc -19.8 -32.2
Co 27 fcc* -19.4 -30.8
Ni 28 fcc -19.3 -29.5
Cu 29 fee -14.4 -19.4 -25.1
Zn 30 fcc* -18.2 -20.8 -27.2
Ga 31 fcc* -19.3 -23.2 -31.9
Rb 37 bcc -23.4 -39.0 -52.9
Sr 38 fcc -40.3 -58.9
Y 39 fcc* -37.6 -56.9
Zr 40 fcc* -35.8 -54.6
Nb 41 bce -34.7 -47.9
Mo 42 bcc -33.8 -46.1
Te 43 fcc* - 33.4 -48.7
Ru 44 fce* -32.9 -42.9
Rh 45 fcc -32.6 -41.5
Pd 46 fcc -32.5 -34.0
Ag 47 fcc -26.0 -33.0 -38.9
Cd 48 fcc* -30.7 -35.2 -41.5
In 49 fcc* -32.1 -38.2 -46.9

were assumed to have cubic structure Xdia can be
calculated from eq. (3). Because p( r) has been
treated in the muffin-tin approximation the in-
tegral in eq. (3) splits into two parts:

eNA
Xdia = - 6mc 2

X [4'lT.tT

p(r)r
4

dr+ p1 r
2

d'rl
o Vws

r>rMT

(4)
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where 15 is the averaged charge density outside the
muffin-tin sphere of radius 'MT'

Choosing a set of suitable volume elements for
the Wigner-Seitz cell (a rhombic dodecahedron
for fcc and a truncated octahedron for bcc struc­
ture) the second integral is easily determined. Re­
placing the Wigner-Seitz cell by a sphere of the
same volume would lead to only slightly smaller
values for IXdia I (e.g., for Cu 1%).

3. Diamagnetic susceptibility of binary alloys

In general, the partial diamagnetic susceptibilities
vary with concentration c and the total is not
necessarily a linear function of c. Fig. 1 shows the
partial and the total susceptibilities of Cu-Rh
alloys based on charge densities provided by a
self-consistent KKR-CPA band structure calcula­
tion [9]. The partial charge de~sity of each compo­
nent was used to calculate the\pa~tial diamagnetic
susceptibilities at various concentrations in the
same way as for pure metals and the total diamag­
netic susceptibility then emerged from eq. (5).

at % Cu

Fig. 1. Diamagnetic susceptibilities of CuRh Alloys.•/0:
partial diamagnetic susceptibilities of Cu/Rh; +: total dia­
magnetic susceptibility of CuRh; 0: diamagnetic susceptibil­
ity of Cu and Rh from table 1. The straight line joins the
values of the pure metals.

Because the diamagnetic susceptibility is ex­
pressed by means of the Green's function in eq.
(2) this equation can be applied to the alloy prob­
lem by replacing Gf(r, r, E) by the configuration
averaged Green's function <G f ( r, rlE) ). The
partial diamagnetic susceptibilities X~a(c) and
X~ia ( c) are then simply determined by the Green's
functions projected onto the components or by the
partial charge densities of the components respec­
tively. The diamagnetic susceptibility is then given
by:

Xdia = CX~a(c) + (1- C)X~ia(C). (5)
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4. Discussion

Pure metals
For comparison with our results the theoretical

free atom and free ion susceptibilities [5,6] have
been added to table 1. As can be seen, for all
elements the metal value of the diamagnetic sus­
ceptibility lies between the free atom and the free
ion value. For some elements the metal and the
free ion values differ less than 12.5% (e.g., AI, Zn
and Cd), so that for these elements the use of ionic
values instead of metal values leads to acceptable
but only rough approximations whereas for other
elements neither the free ion nor the free atom
values are reasonable as a substitute for the metal
values.

The fact that for certain elements the diamag­
netic susceptibilities of the metal and the free ion
are nearly equal can be explained as a compensa­
tion of two effects: Going from a free atom to an
atom in a crystal lattice results in a compression
of the outer electron shells and therefore a reduc­
tion of the expectation values of r 2

• Going from
the free atom to the free ion mainly results in a
reduction of the sum of the <,2) because one
electron less is included in the sum. For some
elements these two effects nearly compensate and
lead to the observed similar values for the metal
and free ion diamagnetic susceptibilities.

Cu-Rh alloys
The partial diamagnetic susceptibilities of Cu

and Rh in Cu-Rh and the total diamagnetic sus­
ceptibility of Cu-Rh are shown in fig. 1. The Cu
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and Rh values were taken from table 1 and joined
by a straight line.

The partial diamagnetic susceptibilities of both
components show a weak but nevertheless visible
concentration dependence which is mainly due to
the increase of the lattice constant going from eu
to Rh.

Since the concentration dependence of both
partial susceptibilities is nearly linear, the total
diamagnetic susceptibility is also linear. Thus, al­
though the partial diamagnetic susceptibilies vary
with composition the total diamagnetic suscept­
ibility can be approximated by a linear interpola­
tion between the values for the pure components.
This should also hold for other alloy systems
where charge transfer effects are not too serious.
For this reason estimations based on the values of
table 1 should in general lead to good approxima­
tions for the total diamagnetic susceptibility of
binary alloys.
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