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The electrical residual resistivity of the Cu-Pt allov system was calculated in the
framework of the fully relativistic KKR-CPA. Both the linearised Boltzmann equa-
tion in the relaxation-time approxitation and the one-electron Kubo formula (ne-
glecting vertex corrections) were used to derive the electrical residual resistivity (T=0)

from the one-electron Green function of the disordered system. Comparison of the

results yielded by the two formulae reveals a very good agreement for the Cu-rich

alloys where the complex energy bands are well defined and a discrepancy for the

Pt-rich alloys which do not show this feature.

1. INTRODUCTION

The Korringa- Kohn-Rostoker coherent-potential approx-
imation (KKR-CPA) has been used for calculating quite
a number of physical properties of disordered alloys. Be-
side equilibrium properties such as the density of states
or the nuclear spin-lattice relaxation rate the calculation
of (non-equilibrium) transport properties is of great in-
terest. Using a simple version of the Boltzmann equa-
tion the electrical conductivity o (or residual resistivity
p) for zero temperature [4,3] and other transport prop-
erties have been calculated for transition-metal alloys.
Although the results of the calculations agree quite well
with experiments it is not easy to say something about
the effect of the two rather crude approximations made
for the application of the Boltzmann equation to trans-
port effects: The relaxation-time approximation and the
assumed existence of a dispersion relation in the alloy
i.e. the existence of well defined complex energy bands.
In order to help to clarify this we applied the KKR-CPA
form of the Kubo formula for the electrical conductiv-
ity (which does not suffer such approximations) to the
Cu-Pt alloy system for which calculations based on the
Boltzmann equation have already been made {3]. We ne-

glected the vertex corrections in the Kubo formula which

107

are also absent in the simple version of the Boltzmann
equation. So we can study if the assumption of well de-

fined energy bands is valid in this system.
2. THE BOLTZMANN EQUATION

The electrons are treated in a semiclassical manner as
wave packets with a wave vector k and a spatial position
7, but obeying the quantum mechanical Fermi statis-
tics. The semiclassical equations of motion in an exter-
nal electric ficld £ hold (1]: 47 = §(k) = Vie(F) and
%E = —%E The linearised Boltzmann equation [7] is
applied to these electrons. Making use of the relaxation-
time approximation the electrical conductivity o (resis-
tivity p) at T=0 for a cubic system is [7]:
2
G=£=§%(—2—;—)—3//;_ST(;F)U(;F) dS (1)
HkF)

where 7 is the quasiparticle relaxation-time {equal to
the transport lifetime in the relaxation-time approxima-
tion), v the Fermi velocity and ! the mean free path of
the quasiparticles. The integration is over the Fermi sur-
face (FS). The mean free path can be calculated from
the k-dependent Bloch spectral functions Ag(k, ¢f) and
is just the inverse of the halfwidth of the Lorentzian

peaks in Ap defining the complex cnergy bands [4,3].
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The Lorentzian shape of Ag is due to the simple expo-
nential decay of the k-states described by the relaxation
time 7. In case the Fermi surface has more than one
sheet (i.e. Ag has more than one peak in certain di-
rections) the electrical conductivity o is a sum of the

contributions of each sheet.
3. THE KUBO EQUATION

The electrical conductivity is given by a configurational
average of the product of two single-particle Green func-

tions and the electrical current operators:
Ouw = Tl‘(J“GJyG)con!A; I‘yu € {Ivy$z}

The average is over all possible configurations of the sys-
tem. The CPA approximation invoives the calculation
of a single averaged Green function {G)cons.- Butler {5]
showed how to use this Green function to calculate the
Kubo conductivity of disordered systems. Neglecting the

vertex corrections the result for a cubic system is:
o = %[6(:*,:"’)+6(6',c') (2)
—&(e*t ) — (e, €h)]
where the complex energies ¢t and €~ are defined in

terms of the Fermi energy ¢r:
et=er+in; ¢ =ep—in; =0

and

. _ —4m? 1 N
oler,eq) = m[m/mdakZchﬂ (3)

» af
Tr {..Ia'"(cg, )7 (K, el)Ja'“(el, &)7(k, ez)}
+Tr {ja'”(fz,él)"m(fx)

(J**(e1,€3) — jB'“(Ch fz))"w(Cz)}]

Here 7 is the CPA scattering-path operator (7% being
the lattice Fourier transform of r(l-c‘)), J the current op-
erator and J = D'JD, where D is the CPA impurity
operator and D' its transposed operator. Because the in-
tegrand in equation 3 is a scalar with the full lattice sym-
metry (in this case fcc) the integration can be restricted
to one irreducible 1/48 of the Brillouin zone (IBZ). The
summation indices are a, 3 € {4, B} (atom species) and
u € {z,y,2} (spatial coordinates). The relativistic an-
gular momentum representation A = (x,m;,[) was used
for the various operators. In this representation the cur-

rent operator is:
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. —e voe [ B e
Tihlen el = 2 ./ws P2 (Fa) [lha—r“] Z3(T )

where Zg(r, €) is the regular solution of the Dirac equa-
tion in the potential sphere a for the energy ¢, quantum
number A and the spatial coordinate y. The integra-
tion is over the Wigner-Seitz cell (integration over the
muffin-tin sphere is not sufficient).

Once the KKR-CPA equations have been solved and
7 has been determined the Kubo conductivity (and re-
sistivity) can be calculated. As far as we know this equa-
tion has not been applied to real three-dimensional sys-
tems vet. It can be shown that equation 1 can be derived
from equations 2 and 3 in case a well defined dispersion
relation €(k) exists [5). So in this case the Kubo and

Boltzmann resistivities should be equal.
4. RESULTS

The relativistic KKR-CPA equations were solved for 8
compositions of the fcc alloy system Cu-Pt (for details
see [2],[3]). The CPA scattering path operator was ci-
ther used to calculate Bloch spectral functions [8] from
which the Boltzmann resistivity was calculated [3] or to
calculate the Kubo resistivity by means of equations 2
and 3. Technical details of the evaluation of the Kubo
formula will be given in a future publication.

The calculated Kubo resistivities are compared to
the corresponding Boltzinann values in figure 1. Appar-
ently the agreement is very good for higher copper con-
centrations whereas for higher platinum concentrations
the results are quite different. Now the Cu-rich alloys
are exactly those which have very narrow complex cn-
ergy bands (i.c. Ag(k, () has a narrow sharp Lorentzian
peak). Moreover only one sheet of the Fermi surface is
present in the Brillouin zone for this composition. This
can be seen from figure 2 where Termi surface cuts and
the halfwidths of the Bloch spectral functions are dis-
played for the copper rich alloy CuziPlag. So the agrec-
ment of the Boltzmann and Kubo resistivities is 10 be
expected in this case.

For Pt-rich alloys however the situation is dillerent,
The Kubo resistivity is larger than the Boltzmann re-
sistivity. For these alloys two or three Fermi surlace
sheets are present in the Brillouin zone (sec figure 2
for CusPtys and CuagPtso). In particular, the second
sheet along the X-W-K directions is very broad and

the peaks in the Bloch spectral function (see [3]) de-
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Figure 1: Electrical residual resistivity of Cu-Pt. Tri-
angles: calculated with the Kubo formula; Circles: calcu-
lated with the Boltzmann equation; Squares: calculated
with the Boltzmann equation neglecting the outer sheets

of the Fermi surface. The lines are for better illustration.

viate from the Lorentzian shape making the assumption
of sufficiently well defined energy bands questionable.
Moreover this relatively complicated situation makes it
difficult to evaluate the surface integral in equation 1.
Especially near the intersections of the second sheet and

the first sheet and near the Brillouin zone houndary the
calculation is somewhat ambiguous. Because of the ex-

istence of badly defined parts of the Ferni surface and
the difficulties with the integration it can be suspected
that our application of the Boltzmann equation does not
yield the correct contribution to the conductivity for the
outer sheets of the Fermi surface. This suspicion is con-
firmed by comparing the Kubo resistivity to the Boltz-
mann resistivity arising from the first sheet only (shown
in figure 1; the data is from table 1 in ref. [3]). The
agreement between these two sets of data is much bet-
ter. Apparently the contribution of the outer sheets of

the Fermi surface is overvalued by the calculation based

on the Boltzmann equation.

Turning to the experimental data it should be noted

K

5%Cu

K

RESIDUAL RESISTIVITIES OF DISORDERED TRANSITION-METAL ALLOYS

30% Cu

K

109

T1% Cu

Figure 2: Fermi surface cuts of Cu-Pt in the planes
I'-X-U-L-K and T-X-W-K. Dots indicate the maxima

of the Bloch spectral functions, the contour lines their

halfwidth.

that the available room temperature resistivities [6] are
closer to the Boltzmann resistivities including the contri-
butions from all sheets of the Fermi surface than to the
Kubo resistivities (the experimental results are shown in
figure 7 of reference [3]). Therelore the Kubo resistivities
do not reproduce the experimental values, especially if
one takes into account that the true experimental zero
temperature resistivity (low temperature measurements
do not yet exist) would be even lower than the available
room temperature data. However, one should vot forget
that even for the calculation using the Kabo formuta
presented in this paper still many approximations ave
made: e.g. the vertex corrections are neglected and the
alloy potential is not selfconsistent. So the agreement of
the experiment with the Boltzmann equation which is
better than the agreement with the more sophisticated
Kubo equation could be the result of an accidental can-
celation of various errors in the calculation based on the
Boltzmann equation. Removal of some of these approx-

imations could help to clarify the situation.
5. SUMMARY

The Kubo formula gives the same description of the
electrical resistivity as the Boltzimann equation i the
relaxation-time approximation wlen the complex energy
bands are well defined. Where this is not the case the
Boltzmann equation is not adequate and the Kubo for-

mula should be used.
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