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The electrical residual resistivity of the Cu-Pt alloy system was calculated in the 

framework of the fully relativistic KKR-CPA. Both the lincarised Boltzmann equa- 

tion in the relaxation-time approximation and the one-electron Kubo formula (ne- 

glecting vertex corrections) were used to derive the electrical residual resistivity (T=0) 

from the one-electron Green function of the disordered system. Comparison of the 

results yielded by the two formulae reveals a very good agreement for the Cu-tich 

alloys where the complex energy bands are well defined and a discrepancy for the 

Pt-rich alloys which do not show this feature. 

1. INTRODUCTION 

The Korringa-Kohn-Rostoker coherent-potential approx- 

imation (KKR-CPA) has been used for calculating quite 

a number of physical properties of disordered alloys. Be- 

side equilibrium properties such as the density of states 

or the nuclear spin-lattice relaxation rate the calculation 

of (non-equilibrium) transport properties is of great in- 

terest. Using a simple version of the Boltzmann equa- 

tion the electrical conductivity a (or residual resistivity 

p) for zero temperature [4,3] and other transport prop- 

erties have been calculated for transition-metal alloys. 

Although the results of the calculations agree quite well 

with experiments it is not easy to say something about 

the effect of the two rather crude approximations made 

for the application of the Boltzmann equation to trans- 

port effects: The relaxation-time approximation and the 

assumed existence of a dispersion relation in the alloy 

i.e. the existence of well defined complex energy bands. 

In order to help to clarify this we applied the KKR-CPA 

form of the Kubo formula for the electrical conductiv- 

ity (which does not suffer such approximations) to the 

Cu-Pt  alloy system for which calculations based on the 

Boltzmann equation have already been made [3]. We ne- 

glected the vertex corrections in the Kubo formula which 
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are also absent in the simple version of the Boltzmann 

equation. So we can study if the assumption of well de- 

fined energy bands is valid in this system. 

2. THE BOLTZMANN EQUATION 

The electrons are treated ill a semiclassical man|mr as 

wave packets with a wave vector/~ and a spatial position 

~', but obeying the quantum mechanical Fermi statis- 

tics. The semiclassical equations of motion in an exter- 

nal electric field g hold Ill: ~ '  = ~7(~:) = ~ k e ( k )  and 

~ k  = -~E." ~ The linearised Boltzmann equation [7] is 

applied to these electrons. Making use of the relaxation- 

time approximation the electrical conductivity a (resis- 

tivity p) at T=0 for a cubic system is [71: 

I 2 ~  ~ I r r  
r(kF)V(kF) dS II (i) (7------- ~ - - - - ~  

p 3 h (27r) s JJFS, _ , 
t(£F') 

where r is the quasiparticle relaxation-time (equal to 

the transport lifetime in the relaxation-time approxima- 

tion), v the Fermi velocity and I the mean free path of 

the quasiparticles. The integration is over the Fermi sur- 

face (FS). The mean free path can be calculated from 

the k-dependent Bloch spectral functions Aa(f¢, ev) and 

is just the inverse of the halfwidth of the Lorentzian 

peaks in AB defining the complex energy bands [4,3]. 
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The Lorentzian shape of As is due to the simple expo- 

nential decay of the k-states described by the relaxation 

time r. In case the Fermi surface has more than one 

sheet (i.e. A8 has more than one peak in certain di- 

rections) the electrical conductivity a is a sum of the 

contributions of each sheet. 

3. THE KUBO EQUATION 

The electrical conductivity is given by a configurational 

average of the product of two single-particle Green func- 

tions and the electrical current operators: 

a~,,, = Tr(J~,GJ,,G)~o,a.; #,u E {z ,y , z}  

The average is over all possible configurations of the sys- 

tem. The CPA approximation involves the calculation 

of a single averaged Green function (G)eonf.. Butler [5] 

showed how to use this Green function to calculate the 

Kubo conductivity of disordered systems. Neglecting the 

vertex corrections the result for a cubic system is: 

,, = ~[~(e+,,+) + ~ ( ~ - , , - )  (2) 

- ~ ( e +  ~ - )  - ~ (~ - ,  c+)] 

where the complex energies e + and c are defined in 

terms of the Fermi energy eF: 

e +=er'+i~7; e- =eF- - iT / ;  r/---*0 

and 

O(e,,e~) = z d 3 k ~ ~ ' ~ c  °ca (3) 
I t  

(J"~(,b,~)- .}~'"(',, ',))r°°(',)} ] 

Here r is the CPA scattering-path operator (I "°° being 

the lattice Fourier transform of r( l : )) ,  J the current op- 

eratoi" and .I = D t J D ,  where D is the CPA impurity 

operator and D t its transposed operator. Because the in- 

tegrand in equation 3 is a scalar with the full lattice sym- 

metry (in this case fcc) the integration can be restricted 

to one irreducible 1/48 of the Brillouin zone (IBZ). The 

summation indices are a,/3 E {A, B} (atom species) and 

E {x,y,z} (spatial coordinates). The relativistic an- 

gular momentum representation A = (x, m.,, l) was used 

for the various operators. In this representation the cur- 

rent operator is: 
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J ^ . ^ , C q ,  ~2} = - ~  m 

where Z~,(F, ~) is the regular solution of the Dirac equa- 

tion in the potential sphere a for the energy ~, quantum 

number A and the spatial coordinate p. The integra- 

tion is over the Wigner-Seitz cell (integration over the 

muffin-tin sphere is not sufficient). 

Once the KKR-CPA equations have been solved and 

1" has been determined the Kubo conductivity (and re- 

sistivity) can be calculated. As far as we know this equa- 

tion has not been applied to real three.dimensional sys- 

tems yet. It can be shown that equation 1 can be derived 

from equations 2 and 3 in case a well defined dispersion 

relation ~(k) exists 15]. So in this case the Kubo and 

Boltzmann resistivities should be equal. 

4. RESULTS 

Tile relativistic KKII-CPA equations were solved for S 

compositions of the fcc alloy system Cu-P t  (for details 

see [2],[3]). The CPA scattering path operator was ,~i- 

ther used to calculate Bloch spectral functious [8] fro,.  

which the Boltzmann resistivity was calculated [3} or to 

calculate the Kubo resistivity by means of equations 2 

and 3. Technical details of tile evahtation of the Kubo 

formula will be given in a future publication. 

The calculated Kubo resistivities are compared to 

the corresponding Boltzmauu values in figure 1. Appar- 

ently the agreement is very good for higher copper con- 

centrations whereas for higher platinum concentrations 

the results are quite different. Now the Cu-rich alloys 

are exactly those which haw' very ,arrow <'omph'x e . -  

ergy bands (i.e. AH(/,', ~l=) has a J~arruw sharp ].Ol'elll zian 

peak). Moreow:r ~mly oue sheel of the lh','mi snrtate ix 

present in the Brillouin zu,e  for this COml~¢,sitio,. This 

can be seen from figure '2_ where Fermi surface ellis ~,llld 

the halfwidths of the Bloch spectral fu ,c t io ,s  arc dis- 

played for the COl>per rich alloy Curt I't~:j. So the agte~'- 

ment o[ the Boltzmaml and l~.ubo resistivities is Io be 

expected in this case. 

I"~n' Pt-rich alloys },owCrv,:, tl,v sit.uatio, is dilh.r~,.I. 

The Kubo resistivity is larger than the l~ohzma,n r~'- 

sistivity. For these alloys two or three l%rmi sin[ace 

sheets are present in the Brillouin zo,e [see tigure 2 

for Cu.~Ptg,~ and Cu~Ptr0).  In particular, the seco,d 

sheet along the X-W-K directions is very broad and 

the peaks in the Bloch spectral functio, (see [.q]) th'- 
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Figure 1: Electrical residual resistivity of Cu-Pt. Tri- 

angles: calculated with the Kubo formula; Circles: calcu- 

lated with the Boltzmann equation; Squares: calculated 

with the Boltzmann equation neglecting the outer sheets 

of the Fermi surface. The lines are for better illustration. 

viate from tile Lorentzian shape making the assunq~tio. 

(ff sulli('i('ntly well deliue(I e.( 'rgy Ilatl(Is (luesti(.mhh'. 

Moreover this relatively complicated situation .lakes it 

difficult to evalnate the surface integral in equation 1. 

Especially near tile intersections of the second sheet atvl 

the first sheet and near the Brillouin zone boundary the 
calculation is somewhat ambiguous. Because of the ex- 

istence of badly defined parts of the Fermi surface and 

the difficulties with the integration it can be suspected 

that our application of the Boltzmann equation does not 

yield the correct contribution to the conductivity for the 

outer sheets of the Fermi surface. This suspicion is con- 

firmed by comparing the Kubo resistivity to the Boltz- 

mann resistivity arising f,'om the first sheet only (shown 

in figure 1; the data is h'om table 1 iu ref. [3]). The 

agreement betwee, these two sets of data is much I,et- 

ter. Apparently the contribution of the outer sheets of 

the Fermi surface is overvalued by the calculation based 

on the Boltz,nann equation. 

Turning to the experimental data it should be noted 
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Figure 2: Fermi surface cuts of Cu-Pt  in the planes 

F-X-U-UK and F-X-W-K. Dots indicate the maxima 

of the Bloch spectral functions, the contour lines their 

half width. 

that tile available room teml)crature resistivities [G] are 

closer to the Boltzmann ,'esisth'ities i.chttling the co.tri- 

buttons from all sheets of the Fermi surface tha .  to the 

Eubo resistivities (the experime.tal  results are show. i .  

figure 7 of reference [3]). Therefore the l(ul)o resistivities 

do not reproduce the experimental values, especially if 

one takes into account that the true experi,nental zero 

teml)erature resistivity (low teml)erature measure.wJfl s 

do not yet exist) wotthl I)t. even lower tha .  Ihe ax'~filalfle 

,'oom tempera l . re  data. I lowever, o .e  she.hi  tlol forgt'l 

that even for lhe cah' . lal ion usiug the lx[tlho f(. ' . lula 

p,'esented i .  this ilaller still iltilliy alllU'oxi.l~,tio.s i. 'e 

nla(le: e.g. Ih(' vertex corrections are .(.gle('t(.d and Ihe 

alloy potential is not selfconsistent. So the agreeme.t  (if 

the experiment with the Boltzmann e(luation which is 

better than the agreeme.t  with the more Sol)histicmed 

l(ubo equation could be the res.l t  of an acci(lental ca.-  

celation of various errors in the calculation based o .  the 

Boltzmanu equation. Removal of solue of these al)l)rox- 

imations could help to clarify the situation. 

5. SUMMAI{Y 

The l(ubo formula gives the same description of Ihr 

electrical resistivity as the 13oltzma.u e(ltiatiou ht the 

relaxation- time apl)roxi,n;ttiou when I he c(..I)h'x e.ergy 

bands are well defined. Where this is to t  the case the 

Boltzmann equation is not adequate and the l(ubo for- 

mula should be used. 
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