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The residual electrical dc resistivity of the transition-metal-alloy system Cu-Pt is evaluated by
making use of the relativistic version of the Korringa-Kohn-Rostoker-coherent potential approxi-
mation and the one-electron Kubo-Greenwood formula for disordered systems. Starting from the
results of a previous calculation the influence of truncation of the angular momentum expansion,
the effects of self-consistency of the alloy potential, the importance of vertex corrections, and the
difference between the nonrelativistic and the relativistic current operator are examined.

I. INTRODUCTION

The Korringa-Kohn-Rostoker coherent-potential ap-
proximation (KKR-CPA) has been used for calculating
quite a number of physical properties of disordered al-
loys in the past. Beside equilibrium properties such
as the total energy or magnetic properties the calcula-
tion of nonequilibrium transport properties is of great
interest. Among these the residual electrical resistiv-
ity (or conductivity) is one of the most thoroughly in-
vestigated nonequilibrium quantity. For metallic sys-
tems the Kubo-Greenwood formula®? is agreed to give
an adequate description of the conductivity. It has been
adapted to the formalism of the CPA alloy theory by
several authors®* and applied to real systems, e.g., Cu-
Zn, Cu-Ga and Ag-Pd,® Al-V (Ref. 6), and Cu-Pt.”
However, some of these calculations suffer from various
kinds of approximations: They are limited to a restricted
angular momentum expansion of £<2,57 do. not®>¢ or
only partially” take into account relativistic effects, ne-
glect the vertex corrections,” or are based on non-self-
consistent potentials.” In this paper, the effects of the
various approximations are studied by successively re-
moving them. The results for the alloy system Cu-Pt of
Ref. 7 are used as a starting point for this study.

II. THE KUBO-GREENWOOD FORMULA

The basis for the calculation of the residual electrical
dc conductivity of a disordered alloy system is a formula
given by Greenwood [see Eq. (31) of Ref. 2] which in
turn may be derived from the Kubo formula [see Eq.
(5.12) of Ref. 1]. For zero temperature this so-called
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Kubo-Greenwood formula reads (in a slightly generalized
form)

wh ,
Opp = NQ.: <§ Jh i 0(€F — €m)d(er — €n)>

with [L,I/E{wy:%z}’ (1)

where J#,, = (m|J,|n) denotes the matrix element of the
current operator in the uth spatial direction and |m) and
|n) are the eigenfunctions of a particular configuration
of the random system. The average, indicated by (...),
has to be taken over all possible configurations of the
system considered. €.; is the atomic volume and N is
the number of the atoms.

Because in the present work the electronic structure of
the alloy is expressed in terms of the one-particle Green
function rather than in terms of wave functions and en-
ergy eigenvalues, these are replaced by using the follow-
ing representation for the imaginary part of the Green
function:®

Im G¥ () = —m ) _ [n)(n] (e — €n), 2

where G* (€) is the positive side limit of the Green func-
tion (see below). Inserting this into Eq. (1) yields

h

Oy =
’Il- ﬂNQat

Tr(J,ImG¥(ep) J, ImGT(er) ).  (3)
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Having to take the imaginary part of the Green func-
tion in Eq. (3) makes the final expressions (see below)
somewhat awkward to evaluate. Using positive and neg-
ative side limits of the Green function one can avoid this
and may express the electrical conductivity as

Opv = %[&#u(e+: €+) + Guv(e™,€7)
~Guu(e*,€7) = Fu(e™, €M), (4)

where the complex energies e and e~
terms of the Fermi energy ep:

are defined in

et =ep+iy, € =€ép—in, N0 (5)

and

auv(ﬁlx 62) = m—t’rr ( J# G(G]_) Jy G(Gz) ) (6)

with e1,e3 € {e7,e7}.

Dealing with cubic systems we may drop the indices
1 and v because for that case the conductivity tensor is
diagonal with three identical elements as long as we deal
with nonmagnetic systems.

The CPA approximation primarily aims to supply the
configuration average for the Green function (G) of a ran-
dom alloy system.? Butler? derived a scheme to evaluate
the configuration average of the product of two Green
functions occuring in Eq. (6), that is consistent with the
CPA (see also Ref. 10). In his formulation the Green
function does not occur explicitly. Instead of dealing with
{G) the information is carried by the scattering-path op-
erator 7CPA of the CPA medium which is closely related
to the Green function (G).° The quantity & of Eq. (6)
can then be expressed by

4m? oo jo
_——_’371-}‘,'397‘: E E C J“ (62,61)
at o,B ‘

x {1 — xw} ! x(ex, €2)j5(€1, €2)
A
+ZC°‘ J2(€2,€1)7P (e1) J:(e1,€2)

&(613 62) =

xTCPA (ez)) . (7

The matrix of the scattering-path operator 7CFA is re-

lated to the CPA ¢ matrix and the structure constants
G(k) by an integral of the inverted KKR matrix, 7(k, €),
over the Brillouin zone (BZ)

+CPA L P
©=g [ ok

QBZ

=g L@ -y ieE ®)

and x is essentially the BZ average of a pair of the ma-
trices 7(k,€)
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x(€1,€2) = ﬁ—/m T(k, €1)7(k, €2)d°k 9)
—TCPA(Gl)TCPA(Ez) . 7

The operator w in Eq. (7) contains the single-site ¢ ma-
trices for the CPA medium and the components o, tCFPA,
and t*, respectively, as well as the CPA scattering-path
operator T°PA .4 J in Eq. (7) is the current operator and
J = D*JD, where D is the CPA impurity operator and

- Dt its transposed operator.* The integration in Eq. (9)

can be restricted to 3/48 parts of the Brillonin zone in
the case of cubic symmetry of the crystal lattice. If the
vertex corrections are neglected by setting the matrix A
to unity, one 1/48 part is sufficient. The summation in
Eq. (7) extends over the components a,3 € {4, B} of a
binary alloy and the spatial coordinates p € {z,y, 2}.

We deal with the above equations within the fully rel-
ativistic Dirac formalism. By adopting the correspond-
ing relativistic angular momentum representation all ma-
trix elements occuring are labeled with the spin-orbit
and magnetic quantum numbers x and m;, respectively,
which are combined to A = (k,m;). In Ref. 7, the non-
relativistic expression for the current operator J = %%V
was adapted to the relativistic calculation by merely us-
ing the relativistic representation. In this representation
the matrix elements of the current operator are of the
form

g .
22 @z (r,e) 2R (x e2),

Tk (e1,€3) =
A,A’( 1y ) mi Jws 3“

(10)

where ZZ(r, €) is the regular solution of the Dirac equa-
tion for the component o for the energy ¢ and the set
of quantum numbers A and p is the spatial coordinate.
The integration is performed over the Wigner-Seitz cell
(integration over the muffin-tin sphere is not sufficient).
Although the use of the nonrelativistic current operator
was expected to be sufficient, in the present work the
correct fully relativistic expression was evaluated as well
in order to study a possible effect on the electrical con-
ductivity. With the relativistic current operator J = eca
the corresponding expression for the matrix elements is

TE, (e1,€2) = ec /

wWs

Brzg (v, ), 28 (r,e0),  (11)

where o, are the standard 4x4 Dirac matrices.!!
Once the KKR-CPA equations have been solved yield-
ing the CPA ¢ matrix and the scattering-path operator
7CPA the Kubo-Greenwood conductivity (and resistivity)
can be calculated by means of Eqs 4), (1), (9), and ei-
ther (10) or (11). :

III. CALCULATIONS

In Ref. 7, the KKR-CPA equations were solved for
various compositions of the alloy system Cu-Pt restrict-
ing the angular momentum expansion of all quantities
to £ < 2. The potentials used had been constructed
in a non-self-consistent manner (see Refs. 12 and 13 for
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FIG.1. Residual dc resistivity of disordered Cu-Pt alloys.

Full circles: calculated values taken from Ref. 7; triangles:
experimental values for T=273 K; squares: estimated values
for T=0 K, using Eq. (12) and data from Ref. 15; diamonds:
experimental values for T=4.2 K (Ref. 16).

details). The electrical conductivity was calculated us-
ing Eq. (7) neglecting the vertex corrections by setting
A = 1. This facilitates the calculation very much because
the Brillouin-zone integration has to be performed for a
scalar quantity only in this case [see Eq. (3) of Ref. 7).
Moreover, the nonrelativistic version of the current oper-
ator defined in Eq. (10) was applied. The results of this
calculation are shown in Fig. 1. The resistivity p = o~!
is displayed instead of the conductivity for matters of
convenience. Comparison to experimentally determined
resistivities is somewhat difficult because for Cu-Pt only
room-temperature measurements are available.l* Only
for some Cu-rich alloys measurements at T=4.2 K have
been done.'® To get a rough idea of the zero-temperature
resistivity, the values measured at T=273 K were extrap-
olated to I'=0 K by using the measured ratio p(T = 4.2
K)/p(T = 273 K) of the alloy system Au-Pd:!®

AuPd
u 42K) o,
o t(0 K) = p—(——")pc Pt(273 K).

PAPE(273 K) (12)

Here it is implicitly assumed that the low-temperature
behavior of the electrical resistivity is similar for the iso-
electronic alloy systems Au-Pd and Cu-Pt. Of course this
is not a reliable way to estimate the residual resistivity
from room-temperature data. But, as no temperature
dependent data are available, we choose this way to get
an indication about the approxiamate magnitude of this
quantity. The resulting values are displayed in Fig. 1.
Comparison with the experimental data for T=4.2 K
demonstrates that the extrapolation yields quite reason-
able results. Of course, the estimated zero-temperature
resistivity is lower than the room-temperature resistiv-
ity for all compositions. Obviously the agreement be-
tween the extrapolated and theoretical values is only sat-
isfactory for alloys that contain more than 60% copper,
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whereas the calculated resistivities for the platinum-rich
alloys are much too large. This failure can be attributed
to various sources: First of all the non-self-consistency
of the alloy potentials could affect the accuracy of the
calculation. Furthermore, the use of the nonrelativistic
current operator may lead to incorrect results. This may
be important especially for the Pt-rich side of the alloy
composition range. Also the vertex corrections may have
an influence on the results for the conductivity, although
their contribution to the Pt-rich alloys is expected to be
small. Finally, the restriction of the angular momentum
expansion to £ < 2, which leads to satisfactory results
for properties related to the density of states, e.g., the
linear coefficient of the low-temperature specific heat or
the spin-lattice relaxation time,'® may lead to an under-
estimate for the electrical conductivity.

Equation (12), of course, is a very crude estimate. But
it certainly gives the correct sign and order of magnitude
of the resistivity change between room temperature and
T=0 K. For this reason the calculated results of Ref.
7 definitively do not match the experimental findings.
In the following, the importance of each of the possible
sources of the deviation is examined.

A. Self-consistency of the alloy potentials

In order to check the effect of charge and potential
self-consistency the potentials of all alloy compositions
were recalculated using the non-self-consistent potentials
as starting values. The full KKR-CPA equations were it-
erated in order to achieve self-consistency in both the po-
tential iteration and the CPA iteration cycle. The electri-
cal conductivity was then calculated in the same manner
as in Ref. 7, i.e., the angular momentum expansion was
restricted to £ < 2, the vertex corrections were neglected,
and the nonrelativistic current operator of Eq. (10) was
used. Figure 2 shows the results of this improved cal-
culation and the relative deviation of the results based
on the non-self-consistent and self-consistent potentials.
Obviously the changes are quite pronounced except for
the Cu-rich alloys with zc, > 85 at.%. This finding is in
accordance with the observations of Ref. 17 who find a
difference up to 30% between resistivities of Ag-Pd calcu-
lated via the Boltzmann equation using a self-consistent
and a non-self-consistent potential, respectively. This
shows that it is important to use self-consistent poten-
tials in resistivity calculations even if one gets satisfac-
tory results for other quantities using non-self-consistent
potentials.

B. Relativistic current operator

The use of the nonrelativistic current operator of
Eq. (10) (in the relativistic A representation) instead of
the correct relativistic one of Eq. (11) was suspected to
be a further source of errors. The matrix elements of
the correct relativistic operator were, therefore, evalu-
ated and the electrical conductivity again calculated by
means of Egs. (4), (7), and (9). The self-consistent po-
tentials were used but the vertex corrections were again
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neglected. The results are to be seen in Fig. 3. The
difference between the results corresponding to the non-
relativistic and the relativistic operator, respectively, are
not very large. The resulting resistivity is smaller for
the relativistic operator in all cases. The difference is
more pronounced on the Pt-rich side of the composition
range than on the copper side. This result is perfectly
understandable in terms of the increasing importance of
relativistic effects for the heavy elements. The correct
relativistic operator of Eq. (11) can be expanded in a
series with increasing order of 1/c yielding the operator
of Eq. (10) as the leading term while the first correction
term of the order of 1/c? contains the spin-orbit coupling
operator!®

(13)

- 4mcza'xVV+---] :

The comparison shows that both operators lead to com-
parable results for the electrical resistivity, thus demon-
strating that the spin-orbit coupling has only a small
influence on the electrical conductivity in this case. This
is consistent with calculations of the optical conductiv-
ity where the operator in Eq. (13) has been used with
the second term contributing about 10% to the matrix
elements. 819

C. Vertex corrections
Calculating the vertex correction makes the evaluation
of Eq. (7) a lot more difficult because first, large matrices
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FIG. 2. Upper part: comparison between the resistivity of
Cu-Pt calculated using non-self-consistent (NSCF) and self-
consistent (SCF) potentials. Lower part: relative difference
between the two calculated values.
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of the order n? x n?, where n is determined by the angu-
lar momentum expansion [n = 2 X (£max + 1), thus n=18
for £ < 2 and n=32 for £ < 3], have to be multiplied and
inverted and second, the Brillouin-zone integral has to be
carried out over 3/48 parts of the zone instead of the 1/48
part. This was the reason why in the early study of Ref. 7
the vertex corrections were neglected. However, the cal-
culation is feasible and the results for the calculations
based on the self-consistent potentials and the relativis-
tic current operator are presented in Fig. 4. As could be
expected the effect is largest for the copper-rich alloys
and rather minute for the Pt-rich side of the composi-
tion range. The vertex corrections are small when the
effective range of the alloy potentials is small and when
the electronic states are more localized to one particu-
lar lattice site.® This is definitely more the case for the
Pt-rich alloys which have more localized d-like states at .
the Fermi surface than for the Cu-rich alloys with more
free electron like s and p states. However, as the major
differences between the calculated and the experimental
resistivities are found on the Pt-rich side, the inclusion of
the vertex corrections does not eliminate the remaining
discrepancy, because it merely changes the resistivity on
the copper-rich side where the deviations are small.

D. Inclusion of f states

As the calculated resistivity still seems too be much too
high on the Pt-rich side of the composition range, finally
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FIG. 3. Upper part: Comparison between the resistivity
of Cu-Pt calculated using the nonrelativistic (nrel) and the
relativistic (rel) current operator; dashed line: results from
Ref. 7. Lower part: relative difference between the two calcu-
lated values.
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FIG. 4. Upper part: comparison between the resistivity
of Cu-Pt without (NVC) and including (VC) vertex correc-
tions; dashed line: results from Ref. 7. Lower part: relative
difference between the two calculated values.

the extension of the calculation to an angular momentum
expansion up to £=3 (f states) was attempted. Compu-
tationally, this extension is quite demanding because the
size of the matrices in Eq. (7) increases to 1024x1024
compared to 324324 for £ < 2. For this reason, in order
to limit the expenditure in computation time, the same
alloy potentials and Fermi energies were used as for the
calculations limited to £ < 2. The results of the calcu-
lations are shown in Fig. 5. The resistivity is now much
smaller for the Pt-rich alloys with a relative difference to
the result for £ < 2 of nearly 60% for CuzPtgs. The rea-
son for this dramatic effect is that the current operators
of Egs. (10) and (11) obey the selection rule A = +1....
Although the contribution of the f states to the density
of states is quite small they may be important for the
electrical conductivity by their coupling to the d states
via the matrix elements of the current operator. This
holds especially for the Pt-rich alloys because here the d
elements of the scattering-path operator—corresponding
to a high DOS at the Fermi energy level—are quite large.
Naturally, for the Cu-rich alloy where both the d and the
f elements are rather small, because the Fermi energy
lies well above the d-band complex, this contribution is
small and there is almost no difference between calcula-
tions restricted to £ < 2 and those restricted to £ < 3.
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FIG. 5. Upper part: comparison between the resistivity
of Cu-Pt calculated without (¢ <2) and including (£ <3) f
states; dashed line: results of Ref. 7. Lower part: relative
difference between the two calculated values.

E. Comparison with measured values

Without doubt the results of the calculations dis-
cussed in the preceding sections lie closer to the extrapo-
lated values of the measured zero-temperature resistivity
(shown in Fig. 1) than the results of the calculations of
Ref. 7 (also shown in this figure) which were calculated
in a less sophisticated way. The agreement, however, is
not all that good, a fact which might be due to the ex-
trapolation in Eq. (12). The extrapolated results are not
compared to the final theoretical resistivities in Fig. 5
in order not to suggest that a coincidence would be any
measure of quality for the calculations. It is possible
that the true experimental 7' = 0 K resistivity of Cu-Pt
lies lower than the extrapolated zero-temperature curve
in Fig. 1 and, therefore, matches the calculated curve of
Fig. 5. Presently, measurements of the resistivity of Cu-
Pt alloys at very low temperatures are in progress and
will help to clarify the discussion when available.

IV. SUMMARY

The calculation of the residual electrical dc resistiv-
ity of disordered Cu-Pt alloys by means of the Kubo-



Greenwood formula and the relativistic KKR-CPA yields
numerical values that are substantially smaller than the
results of an earlier calculation based on a simplified ver-
sion of the Kubo-Greenwood formula and on non-self-
congistent alloy potentials. By removing successively the
restrictions of our previous calculation it turned out that
it is indispensable to use alloy potentials determined in
a self-consistent manner in any case. The vertex correc-
tions should be calculated in cases where the electronic
states are not well localized at a specific lattice site, i.e.,
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for alloys which have predominantly s and p states at the
Fermi energy level. The use of the nonrelativistic and the
relativistic form of the current operator yields differences
just when heavy elements are involved. Finally, f states
should be included in the calculation whenever the d-like
component in the scattering operators is not negligible,
i.e., whenever the d-like density of states is high at the
Fermi energy level. As it turned out this demand may
be even more important than the request for using self-
consistent potentials.
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