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Abstract. - A fully relativistic first-principles theory of the conductivity of disordered magnetic
alloys based on the Kubo-Greenwood formalism and the spin-polarised relativistic Korringa-
Kohn-Rostoker coherent-potential approximation (SPRKKR-CPA) method is presented. This
new approach allows for a treatment of spin-orbit coupling and spin polarisation on an equal
footing and to account properly for the reduction in symmetry caused by the simultanous
presence of them that way. Consequently—in contrast to previous approaches—one has access to
a parameter-free theoretical description of the spontaneous-resistance anisotropy and the
spontaneous Hall resistivity of magnetic alloys. A first application to the system Fe-Ni yields
results which are in very satisfying agreement with experiment.

There are a number of interesting phenomena related to impurity scattering in
ferromagnetic alloys for which up to now no description from first principles is available.
Among these are the spontaneous-resistance (or magnetoresistance) anisotropy (SMA) and
the anomalous (or spontaneous) Hall resistivity (AHR) which oceur in principle in any
ferromagnetic alloy. Note that these effects must not be confused with the field-dependent
normal magnetoresistance and Hall effect.

Quantitatively, both effects are expressed by means of the -electrical-resistivity
(conductivity) tensor @(e) which for cubic systems with the magnetisation along the z-axis
has the form[1]
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While oy is a direct measure of the AHR, the SMA is expressed by the ratio[1]
Ao  0(B)—o,(B)
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where ¢ = (1/8)(2¢ , + @) and all quantities are determined by extrapolation to a vanishing
external magnetic field B.

To a great extent motivated by the technological importance of the SMA, there have been
a large number of corresponding experimental investigations during the last four decades.
Among the systems studied, Ni-based alloys received special attention because of the
pronounced SMA found for many of them. In particular, the system Fe-Ni shows one of the
largest SMA found so far for transition metal systems. The existing experimental SMA data
at low temperatures of disordered, polycrystalline Fe-Ni alloys are summarised in fig. 1.
Starting with Fe diluted in Ni, Ag/p slowly increases with increasing Fe concentration to
reach a maximum at about 10 to 20% Fe. Further increase of the Fe content causes the SMA
to fall rapidly to very low values.

It was first noted by Smit[2] that the physical origin of the SMA is the spin-orbit
interaction. Based on this central assumption several authors developed more and more
sophisticated models to describe the SMA in the past[2,3]. However, all these approaches
end up with the s-d picture of electronic conduction [4]. All theories on SMA presented so far
are based on the two-current model separating the total current into two distinct
contributions coming from electrons of different spin orientation. Spin-orbit coupling,
represented by the parameter y, gives rise to hybridisation of electronic states of different
spin character and causes the SMA that way. Using some additional simplifications, Campbell,
Fert and Jaoul (CFJ)[3] found for the SMA ratio
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where o ' 1) are the resistivities of the two spin subsystems [8,5]. This expression or a
refined version of it has been used up to now to discuss corresponding experimental data
considering y as a fitting parameter. However, one has to note that the above expression
cannot be used for a rigorous caleulation of the SMA—primarily because y has no clear-cut
definition.

A straightforward and rigorous access to galvanomagnetic effects, without using the
above approximations or encountering the mentioned problems, is supplied by the Kubo-
Greenwood equation for the conductivity tensor o[6,7]
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Here G ¥ (Ey), representing the electronie structure of the system, is the positive side limit of
the single-particle Green function at the Fermi energy EF, j, is the u-th spatial component of
the electronic-current operator j and (... )., denotes the atomic-configuration average for a
disordered alloy. Equation (4) can be derived from general linear-response theory without
any special assumptions for the diagonal components but requires elastic scattering for the
Hall conductivity [8].

By determining G * via the Korringa-Kohn-Rostoker method of band structure calculation
in connection with the coherent-potential approximation (KKR-CPA), eq.(4) can be
evaluated in a most reliable way. The corresponding expressions for o,, for paramagnetic
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Fig. 1. Fig. 2.

Fig. 1. - Spontaneous-resistance anisotropy of Fe-Ni alloys. Open symbols: experimental values at low
temperatures (0: [1], ©: [2], A:[3,9], 0: [6]). Full circles: calculated values, broken line: calculated values
corrected for extra isotropical scattering; dotted line: SMA calculated by means of eq. (3) (see text).
Full lines serve as guides for the eye.

Fig. 2. - Calculated residual resistivities of Fe-Ni alloys: longitudinal (||) and transverse ( L) resistivity,
average o = (1/3)(2¢ , + 0,). Experimental low-temperature resistivities ¢ by various authors: o: [1],
o1 [2], x:[5], @: [10], +:[11], A:[12]. The solid lines connect calculated values. The dashed line is a guide
for the experimental resistivities.

systems and temperature 7 = 0 K have been derived by Butler [7] and have been applied
with great success in their original non-relativistic form [13, 14] as well as their corresponding
fully relativistic form [15] to calculate the residual resistivity of various alloy systems.

To get access to the SMA and AHR in the limit 7 = 0 K we have generalized Butler’s
approach by evaluating G* using the spin-polarized relativistic version of the KKR-CPA
(SPRKKR-CPA) [16]. This scheme, based on the Dirac equation for a spin-dependent
potential derived from local spin density functional theory, accounts on the same
level—without using any parameters—for all relativistic effects as well as for the magnetic
state. A natural consequence of this is that the symmetry reduction due to the simultaneous
presence of spin-orbit interaction and magnetism—giving rise to the form of ¢ in eq. (1) and
that way to the SMA and AHR—is automatically accounted for. This property is completely
analogous to that of the conductivity tensor o(w) at finite frequencies w used to discuss
magneto-optical phenomena as the Kerr rotation or ellipticity [17]. Finally, one has to mention
that using the SPRKKR-CPA there is no need to rely on the two-current model any
more.

As a first application of the presented approach we studied the alloy system Fe-Ni in the
f.c.c. structure. For various compositions with ap, <50%, the electronic structure was
calculated using the SPRKKR-CPA with an angular-momentum expansion up to l,,,x = 3. For
each concentration the tensor ¢ and its inverse @ were determined on the basis of eq. (4)
taking the so-called vertex corrections into account[7]. The resulting longitudinal and
transverse resistivities, o, and ¢ | , respectively, together with the average resistivity o are
shown in fig.2. Comparison of @ with experimental values reveals that the calculated
resistivities are somewhat lower than the measured ones—especially for higher Fe contents.
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This situation is just the same as it is often found when studying the residual resistivity of
paramagnetic alloys [14]. The main reason for the discrepancy seems to be that our approach
accounts only for chemical disorder but not for topological disorder as the source of the
resistivity (see also below).

In full aceordance with experiment we find ¢, > ¢, for all concentrations of Fe-Ni (see
fig. 2). The corresponding positive anisotropy ratio is shown in fig. 1. The most prominent
feature of this curve is the very pronounced decrease of Ag/g from about 40% for Ni-rich
alloys to values of about 7% for 50% Fe. There is even slight evidence for a maximum value at
10% Fe. Obviously, this concentration dependence of the calculated SMA ratio is in rather
satisfying agreement with experiment. However, the calculated SMA ratios are about twice
as high as the measured ones and the maximum is less pronounced in the calculated curve.
There are a number of possible reasons for the observed deviations.

Because of the demanding computational effort, the calculations have been done for a
special orientation of the magnetisation m (m | z), while the experimental data stem from
measurements on polycrystalline samples. The dependence of Ag/ @ on m can be described in
terms of the so-called Déring coefficients [1], which have been determined experimentally for
Fe,;Nigs [18]. From these data we found that the necessary averaging procedure with respect
to m would change the theoretical data by only some few per cent.

A further possible source for the deviation are isotropic contributions to the electrical
resistivity which are not included in the calculation and which merely enhance @ but not Ag.
That such contributions are present is strongly suggested by the results for o in fig. 2.
Scattering at grain boundaries, short-range order, clusters ete. could enhance the isotropical
resistivity without increasing Ag because this extra scattering is independent of the
magnetisation and adds the same @ ey, to 0y and to o , , thus not changing Ap =g — ¢ ,.In
order to get an idea of how this extra scattering might influence the SMA ratio, we calculated
Ao/ 0 using experimental values for ¢ instead of the smaller calculated values. The result,
shown in fig.1 as a dashed line, lies much closer to the experimental curve than the
uncorrected calculated values.

Finally, from the temperature dependence of Ag/ g [1] one can expect that extrapolation
to T =0 K will increase the experimental data by around 5%.

Analysis of the matrix element of the current operator in eq. (4) allows one to investigate
the role of spin-flip scattering processes for SMA. Within non-relativistic theory these can-
not occur because the current operator j, = —if(e/m) V, does not couple to the spin degree of
freedom. This differs from the relativistic case where j, is given by eca, with a, one of the
Dirac matrices. Analysing the corresponding matrix elements [17], one finds that the spin-flip
processes in general contribute to less than 1%. Thus these processes have—at least for 3d
systems—practically no influence on the SMA. This confirms the generally made assumption
that spin-orbit interaction causes SMA primarily by hybridisation of states of different spin
character.

After having calculated the electronic structure of the system Fe-Ni, it is possible to
investigate the applicability of the CFJ model for the SMA ratio. In the spirit of this model
we set: o' /o' =ng /ng'. This implies equal scattering probabilities for all scattering
processes from the s-band and the assumption that the res1st1v1ty of each spin subsystem
solely arises from s-d scattering. From the calculations o /Q is found to decrease
continuously from 9 for 1% Fe to 4 for 50% Fe. This agrees quite well with a ratio of 11
deduced from measurements for dilute FeNi[5]. Choosing y such that Ag/¢ = 40% for
Fe;Nig,, one gets a SMA ratio that is given by the dashed line in fig. 1. Obviously, this simple
model reproduces the concentration dependence of the SMA ratio only in a very crude way.

Besides the strong SMA, Fe-Ni also exhibits a pronounced AHR. Unfortunately,
experimental data over the entire composition range is available only at room temperature.
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Fig. 3. - Spontaneous Hall angle of Fe-Ni. Full circles: calculated, open symbols: experimental values at
room temperature (A:[19], o: [20]).

For this reason, the Hall angle ¢y /0 has been plotted in fig.3 to compensate the
temperature dependence as far as possible and to allow a comparison to theoretical data for
T = 0 K that way. Obviously, the agreement between calculated and measured Hall angles is
very satisfactory. The main feature of the data is the change from negative to positive sign
upon adding Fe to Ni at about 10% and 14% Fe, respectively. Further increase in Fe content
is accompanied by a rapid rise of the Hall angle.

It was already pointed out by Smit [2,20] that the change of sign of the AHR and the
maximum value of the SMA occur at roughly the same alloy composition—a feature indeed
found by the calculation. This coincidence may be more than accidental, because both
phenomena are caused by the presence of spin-orbit interaction. However, the electronic
structure does not show any peculiarity for this composition either for the DOS or for the
Fermi surface. Furthermore, one should point out that in contrast to the ordinary magneto-
resistivity or Hall effect no coupling of an external or internal field to the orbital degree of
freedom is needed to give rise to Ap or gy. This is obvious from the Hamiltonian underlying
the SPRKKR that contains an exchange-correlation field that couples only to the spin of the
electron but contains no term coupling explicitly to the orbital degree of freedom of the electron.

Two distinet scattering mechanisms have been suggested to be responsible for gy. The
skew-scattering mechanism consists in a deflection of the scattered conduction electrons due
to the asymmetrical scattering cross-section caused by spin-orbit interactions [20, 21]. The
side-jump mechanism proposed by Berger [22] causes a transverse current by a finite lateral
displacement of the conduction electrons during scattering. For diluted alloys these sources
for oy are assumed to be given by @40 and b0 respectively. From a corresponding fit of
the theoretical data one gets g@gy = —0.0087 and by =2.0nQcm. This is in reasonable
agreement with available experimental data for ¢y (—0.00625[5] and —0.004 [23]) and by
(2.25 nQem [5]).

Berger has tried to give an explanation for the change in sign of the AHR in terms of a
simple split-band picture of the electronic structure [24]. The Fe- and Ni-related spin-up
bands were assumed to be completely filled. Upon increasing the Fe content it is expected
that the Fermi energy passes through the top of the Fe- or Ni-related spin-down bands. In
contradiction to this, no remarkable shift of the Fermi energy with respect to the Fe or Ni
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subbands is found by the calculations. Furthermore, the spin-up bands are not completely
filled, thus giving rise to a considerable contribution to the density of states at the Fermi
level. Therefore, it seems that no simple explanation for the change in sign of the AHR can be
given in terms of the density of states alone.

In conclusion, the fully relativistic spin-polarised KKR-CPA in conjunction with the
Kubo-Greenwood theory for electrical conduction allowed for the first rigorous and
parameter-free calculation of the SMA ratio and AHR in disordered ferromagnetic alloys.
Application to the system Fe-Ni led to very satisfying agreement with experiment. This
opens the way for further detailed discussions of experimental data. Furthermore, it will be
possible to investigate the fundamental question whether there is an upper limit for the SMA
as is suggested by experimental data and other related problems.
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