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Optical Conductivity of Disordered Alloys Calculated from First Principles
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The optical conductivity of random Ag-Au alloys was calculated applying the KKR-CPA method
and the Kubo-Greenwood equation. Drude’s law was fitted to the calculated conductivity for low
frequencies to allow for a discussion of the free electron model and to obtain optical relaxation
times which could be compared to experimental data. The imaginary part of the dielectric function
calculated from the conductivity was split into intraband and interband contributions and was also
compared to measured data. Possible reasons for the obtained differences in the interband transition
onset energy as well as extensions of the formalism to more complicated systems are discussed.
[S0031-9007(99)08650-0]

PACS numbers: 72.15.Eb, 78.20.Bh

The optical properties of random alloys, especially ofrather crude tight-binding Hamiltonians [7,8] or for one-
thin ferromagnetic films, play an important role in moderndimensional model alloys [9].
mass storage applications and are therefore attracting alt is the purpose of the present paper to show how
lot of interest [1,2]. Unfortunately, until now it has optical conductivities or, alternatively, the imaginary part
not yet been possible to calculate these properties frorof the dielectric function of random metallic systems
first principles, i.e., in a completely parameter-free way.can be calculated by combining a sophisticated multiple
Such parameter-free calculations have been shown to k&eattering approach to the electronic structure problem,
extremely useful for discussing real physical phenomenghe KKR-CPA, with the very general Kubo formula for
in complex metallic systems and also for taking a furthersolving the transport equation. As an application of the
step towards a computer-aided design of materials. formalism, the real part of the optical conductivity of

The Korringa-Kohn-Rostoker (KKR) method in con- the disordered bulk alloy silver-gold is calculated using
junction with the coherent potential approximation (CPA)nothing but experimental lattice constants as an input. At
[3] and local density functional theory allows for an ac-the end of the paper, the generalization of the formalism
curate numerical description of many physical propertieso more complicated systems, namely, ferromagnetic or
of random alloys from first principles. dc transport coef-layered systems or systems with a surface, is outlined.
ficients have been calculated with great success for both In linear response theory the real part of the con-
paramagnetic [4,5] and ferromagnetic [6] alloys. Calcula-ductivity of a disordered system at arbitrary frequencies
tions of transport coefficients for optical frequencies, how-w is given in terms of the Kubo-Greenwood equa-
ever, have been performed only in a simplified way f|ortion [10]:
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where f, j, andV are the Fermi function, the electronic a(0) = iTr(Im G(er)ju IMG(€r)ju deont - (3)
current operator, and the volume of the system, respec- Vi
tively. The brackets indicate that a configurational aver-

age over all configurations of the disordered alloy has tc;t is shown in Ref. [11] how this dc conductivity can be
9 9 ; . 0y 1 evaluated in the framework of the KKR-CPA by express-
be taken. For the cubic systems considered in this pa

: Ing the average over the product of Green functions in
per, the three diagonal components of the tersgy are X . : .
. X terms of configurationally averaged CPA single-site Green
equal and we therefore merely writg for their real part.

At ZEro temperature one can write () in terms of the functions and approximately evaluating the so-called ver-
P ] tex corrections. Now Eg. (2) contains basically the same
Green function of the system:

expressions as the dc expression [Eq. (3)] with the only

o1(w) = 1 €r de difference that pairs of different energies occur in Eq. (2)
Vor Je—ho and an additional energy integral has to be performed.

. . One can therefore calculate the integrand of Eq. (2) by

X TImG(e)ju IMmGle + fiw)ju)eont - (2) means of a modified version of the dc expressions given

For w = 0 this expression reduces to the usual dcby Ref. [11]. Because in contrast to dc calculations one
expression which is given by has a variety of photon energies and also has to carry out
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an energy integration, calculations of the optical conduceomplex with respect to the Fermi energy. Above this
tivity are very time consuming. energy interband transitions between the conduction band

In order to demonstrate the new technique, the alloyand the lower lying/ bands contribute to ().
system silver-gold was chosen. It has the advantage that Drude’s theory for free electrons predicts a variation of
for low photon energies the behavior of the electrons isr;(w) of the following form:
expected to be free electronlike with interband transitions ) o (0)
occurring only for photon energies above a certain thresh- o (0) = —F/F—,
old. One can therefore study the intraband and interband 1+ (w7)
regimes separately. Moreover, quite some experimentalherer is the relaxation time. This formula was fitted to
data is available for Ag-Au. Note that the approach is nothe calculatedr, () for energies below the onset of inter-
limited to such comparably simple alloys. Any alloy sys-band transitions, where the electrons have mairdyd p
tem can be treated with this combination of local densitycharacter and behave similar to free electrons. The result
theory, KKR-CPA method, and the Kubo formalism no of one such fit is shown in Fig. 1. One sees that for low
matter how strong electron scattering is. frequencies the calculated,(w) indeed obeys Drude’s

For the calculation of the optical conductivity, self- law very well. Optical relaxation times obtained by
consistent alloy potentials were generated in a first stepneans of this fitting procedure are displayed in Fig. 2 for
by iterating the KKR-CPA equations until charge self- all of the alloys together with some experimental values
consistency was achieved [12]. Based on these poteffier 7. Obviously, the calculated relaxation timeshow
tials, the KKR-CPA equations were solved once morethe same concentration behavior as the measured ones, but
for a dense mesh of real energies covering the energineir absolute values are higher. As the measured data
range occurring in the energy integration in Eg. (2).were obtained at room temperature, an obvious source for
The angular momentum expansion was carried out up tthis discrepancy is the thermal contribution to optical re-
¢ = 2. A scalar relativistic approach including all rela- laxation. One can use experimental residual resisitivity
tivistic effects except spin-orbit interaction was chosenratios [14] to take account of this effect and obtain cor-
Using the results of the KKR-CPA calculation, the opti- rected experimental relaxation times corresponding to low
cal conductivity was then evaluated for a number of photemperatures (Fig. 2). The agreement between calculation
ton energies between 0.01 and 2 Ry by means of Eg. (2and experiment is much better now, and the remaining dif-
Moreover, for each alloy an additional dc calculation wasference can be attributed to effects of surface roughness or

(4)

performed using Eq. (3). contaminations which are known to reduce significantly
The result of one such calculation is shown in Fig. 1 forexperimental optical relaxation times [15].
the alloy AgoAusy. One sees that starting frof = 0 In Fig. 2 the relaxation time is also compared to the

the conductivity drops quickly as the photon energy iscalculated dc conductivity. One sees tlgD) is almost
raised. At about 2 eV a minimum is observed after whichperfectly proportional tor as one, of course, expects
the conductivity begins to rise again. The position of thefrom Drude’s formula for the dc electrical conductivity,
minimum is easily identified as the energy of idand o (0) = ne’r/m*, where n is the density of electronic
carriers, andm™ is the reduced mass. Using the free
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FIG. 2. Relaxation timer and dc conductivityo (0) of Ag-
FIG. 1. Optical conductivity of a AgAus, alloy. Open Au alloys. Solid squares: calculated values foobtained by
squares: calculated values fefw); solid square: calculated dc fitting Drude’s law to the calculated(w); solid triangle [8]
value; broken line: Drude’s law fitted to calculated data in theand solid circles [13]: experimental values foropen squares:
low-frequency regime below 2 eV (using=7 X 10715 s).  experimental values corrected for thermal relaxation processes
Inset: regime of very low photon energies. (dotted guideline); diamonds: calculated dc conductivity
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electron densityif.. which is5.86(5.90) X 102 m=3 for  sponding measured ones by 0.3 to 1 eV depending on the
Ag(Au), assuming one conduction electron per atom, anéxperimental source and on the alloy composition. There
reading the proportionality facter(0)/7 = ne?/m* from  are several possible explanations for the observed discrep-
Fig. 2, one obtaingn/m*) = 1.2 X (ngee/miree), Where — ancies which were also observed by other authors, e.g., for
miree iS the free electron mass. For one electron per atonpure Ag, where a calculateggf”) was found to be 0.6 eV too
i.e., n = npee, the reduced mass is therefore about 0.8ow [18]. First of all, the calculations presented here are
times the free electron mass for all of the Ag-Au alloys.based on perfect infinite bulk systems, whereas the mea-
This result agrees with experimental findings [13]. surements might be influenced by the surfaces where the
From o the imaginary part of the dielectric func- electronic structure differs from the electronic structure in
tion e, can be calculated. One can spiif into a part the bulk and where the lattice is distorted in the uppermost
corresponding to Drude-like intrabarié) and interband layers. Moreover, the surface might be rough or be cov-
contributions(i): ered with adsorbates of all kinds. Also, the films prepared
o1 (D) (@) for optical measurements usually contain large amounts of
elw ="C=a @+ alo), ) stresses leading to an additional variation of the lattice con-
wheree, is the vacuum permittivity. The interband con- stant [15]. Comparing the experimental results 5P

tribution e () was calculated by subtracting from the to- 9/Ven by various sources (see Fig. 4), one sees that there

. Lo (D) (D) is quite some uncertainty, probably due to some of the ef-
tal e;(w) the intraband contributios, " = o (w)/eyw fects mentioned.

gl.ven by Eq. (4) using the rel;e)lxatlon t|me§sh9wn n As calculations of the optical conductivity of alloy
Fig. 2. Some of the results fet are shown in Fig. 3 to- surfaces or films are not feasible at the moment in the
gether with experimental data. One sees that both experiame rigorous parameter-free way as for bulk alloys, these
mental and theoretical curves show a similar behawior:  possible reasons are difficult to verify. However, one can
is zero for energies below a certain enefgfy —the on-  try to estimateZ?) from the density of states (DOS). The
set of interband transitions—and reaches a maximum at ashset energy should be roughly the distance between the
energyEen,, Which is 1.5 to 2 eV above this onset energy. Fermi energy and thé-band complex. For pure gold,
For even higher energief(z’) decreases again. There is athe electronic structure of a semi-infinite system with
very good agreement between experiment and calculatior®s surface has been calculated using the screened KKR
concerning the absolute value ef especially for gold- Method [19], and the DOS was given for various planes
rich alloys. Even the shoulder occurring for the low sil- Parallel to the surface. It seems that théand complex

ver alloy (20%) at about 2.8 eV is well reproduced by the'S indeed somewhat closer to the Fermi energy for the
calculations. A certain disagreement, however, is found
for the energies where interband transitions gt@ft) and
where the maximum oté’) is located(E¢,,). TO make
this clear,E"”) and E.,,, are shown in Fig. 4 as a func-
tion of alloy composition. The calculated onset energies
and maximum positions are indeed lower than the corre-
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FIG. 4. Onset energy of interband transitiofi$’ and energy

Ecmax Where eé’) has its maximum. Empty diamonds: calcu-
" . lated E@ based on experimental lattice constants; diamonds
2 3 4 5 6 with symbols: results for modified lattice constarits1.5%);

E [eV] empty circles: calculated,,,,,. Full symbols: experimental

values forE® (down triangles [13], squares [16], up triangles

FIG. 3. Interband contribution te, of Ag-Au alloys. Lines [17]) andE,,, (full circles [16]). Arrow: estimated correction
with solid symbols: calculated values; other lines: experimentafor the onset energy in gold-rich alloys due to an inclusion of
values [16]. The curves are labeled with the Ag concentrationspin-orbit effects in the calculations.
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uppermost surface layer than for the deeper lying layersin extension of the formalism to layered systems is also
but the shift in energy is definitely below 0.3 eV. realistic. The screened KKR-CPA method has been suc-
In order to estimate the effect of a varying lattice cessfully applied to the calculation of dc conductivities of
constant, two sets of calculations were carried out fomultilayer systems recently [22]. A generalization to
the alloy AgoAusg using artificial lattice constants which optical conductivities is straightforward following the
were 1.5% higher and lower than the true experimentatoncepts of the present paper but requires extensive
lattice constant used in the calculations already describedomputational resources.
One finds that the higher lattice constant leads to a 0.2 eV In summary, the first principles theory presented here
increase of"), whereas the lower lattice constant leads toyielded the first rigorous parameter-free calculation of
a corresponding reduction. Thus, the two surface effectfequency dependent transport quantities for disordered
discussed so far could sum up to 0.5 eV and at leastlloys. This is a major step towards a parameter-free
partially explain the observed energy shiftsaf. description of electronic transport in any type of dis-
A further possible explanation for the shifts has to doordered metallic system. Am impressive agreement be-
with the foundation of the electronic structure theory usedween calculated and measured dielectric functions was
here: The underlying local density functional theory isachieved. The remaining differences are probably caused
valid only for the electronic ground state and might fail by changes of the electronic structure and the lattice con-
for the excited states occurring when interband transitionstant near the surface which are not included in the cal-
take place. This was suspected by some authors, e.gulations. The method presented should be extendable to
in Ref. [18]. As local density functional theory is often magnetic or layered systems in a straightforward way.
successfully used even for excited states, we think that
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