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Electrical conductivity of finite metallic systems: Disorder
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The electrical conductivity of finite, three-dimensional clusters containing up to 201 atoms on an fcc lattice
was calculated using a combination of density functional theory, multiple-scattering theory, and the Kubo-
Greenwood equation. Isolated clusters and clusters embedded in a medium determined by the coherent-
potential approximatioiCPA) were investigated. Densities of states and electrical resistivities were calculated
for various situations: varying numbers of configurations used for the configurational average, varying ener-
gies, different alloys, different cluster sizes, and, finally, two cluster types, namely, spherical and rectangular
clusters. Cluster calculations were compared to CPA calculations based on the same alloys. From this com-
parison a criterion was derived when a representation of an infinite medium by finite clusters is expected to
yield good results for the conductivity.

. INTRODUCTION such as the density of statffiave been obtained in a fairly
easy way, the more complicated transport quantities have not
The electrical conductivity of multicomponent metallic been investigated very thoroughly up to now. To the knowl-
systems is extremely sensitive to the microscopic arrangesdge of the authors short-range order effects on the electrical
ment of the various atom species on the crystal lattice. Thisonductivity have only been studied by one group from first
is seen in alloys where ordered and disordered states exigirinciples®'* However, only two alloys were treated, and
Such alloys, e.g., GAu, show a comparatively high resis- problems of configurational averaging and cluster size were
tivity in the disordered phase? whereas after the transition not addressed.
to the ordered state the resistivity drops to a very low value This work aims on giving a thorough and systematic de-
although during the transition merely some atoms arescription of the electrical conductivity of finite clusters from
exchanged:’ _ o first principles. In order to facilitate the calculations, only the
The theoretical treatment of transport in disordered alloygase of disorder is treated. For this case cluster results can be
hqs seen major advances smce_the advent of certain f'rsébmpared to conductivities obtained by applying the
principle methods for the calculation of the electronic Struc-¢qnerent.potential approximation, which explicitly describes
ture and the properties of such systems. _In partlcu_lar, Ahfinite disordered systems; however, omitting certain multi-
"’.‘F’P“’aCh that starts frpmlacal density funcno_naUescr_lp- site contributions. The three main objectives of the paper are
tion of the many-particle problem, treats disorder in the. . . )
framework of thecoherent-potential approximatiofCPA) (1) to clarify the m_fluenc_e of cluster Slz€ and the role of the
procedure of configurational averagin@) to compare clus-

in conjunction with the Korringa-Kohn-Rostoker(KKR) ductiviti dina CPA |
method, and uses the rigoroKsibo-Greenwood formulaf ter conductivities to corresponding results, 4iid to

linear response theory for the transport calculation has lea@Pt@in predictions for which alloys or energy regimes cluster
to excellent results for the conductivity of paramagrfefic  @PProximations are sufficiently precise to justify their appli-
and ferromagnetic alloySEven optical properties have been cation in short-range order calculations.
calculated making use of this formaligh. For this either large isolated clusters are constructed or
Between perfecﬂy ordered Systems that in the limit 0fC|USterS are embedded in a Surrounding CPA medium repre-
zero temperature do not show any electrical resistivity at alsenting the corresponding disordered alloy of the same com-
and random alloys, however, there is a wide range of systenfgosition. The electrical conductivity of these clusters is cal-
that shows other states of order. One example is short-rangrilated using the Kubo-Greenwood formula in both cases.
order that is characterized by local correlations of the latticeBy considering different cluster configurations and by intro-
occupation. Like long-range order short-range order has aducing statistical weights corresponding to the desired order
influence on the electrical resistivity but the relative resistiv-parameter one hopes to be able to model disofoieshort-
ity changes produced by this type of order are usually lessange order in a later stagey calculating conductivities for
than 5%%° In contrast to long-range order, which always three different alloys and for a variety of different energies
leads to a reduction of electrical resistivity, short-range ordeone is able to explain the expected deviations of, e.g., cluster
can either increase or decrease resistivity. The theoreticaind CPA results, and to derive rules for which situation the
treatment of short-range ordered systems is difficult becausduster approximation works well.
neither Bloch’s theorem holds nor can an effective medium The paper is organized as follows: In Sec. Il the theoret-
be introduced in a simple way as is done for random alloysical framework is outlined. Section Ill presents some first
Short-range ordered systems have been treated in the framests and the results of various sets of calculations. Section
work of multiple-scattering theory by using small finite clus- IV gives an interpretation of the results observed, which are
ters. While expressions for “simple” electronic quantities finally summarized in Sec. V.
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Il. THEORETICAL APPROACH TET'(E) :tE(f) SnmdLLr
A. Multiple-scattering theory
. . . . . 5 . k
The application of multiple-scattering theory in electronic +k;n 2 (&G Ru; &) T (6). (D)
L”

structure calculations has been discussed extensively in
literature!>=> We therefore only give the most important
equations relevant for the present work. . This is the fundamental multiple-scattering equation “on
The potential function is assumed to be a collection ofihe energy shell.” It gives"™ (€), in terms oft"(e), which
. . . . . . . LL’ ’ L 1
nonoverlapping muffin-tin potentials. The multlple-scatterlngare completely determine

! - . d by the phase shifts, and the struc-
theory leads to the following decomposition of thenatrix ; NS (R hich d d onl h
for the system with respect to lattice sit&s: ure constan LL/(Rom:€), W Ich depend only on the spa-
tial arrangement of the scattering sites. Equatifnis valid

. . for any arrangement of potentials even if we have a different
T(F, €)= "™, €). (1) scatterer at each site. Thus, it is a good starting point to
nm discuss pure metals as well as alloys with an arbitrary state
The quantities™™™ are the scattering-path operatSrand ~ ©f order. _ L
are defined by A general expression for the Green’s functiGir,r’; €)
for the assembly of scatterers that will be of use in later

R N = 3 3 o = sections when we wish to obtain expressions for observables
) =t ) St X | OPry [ dProt"(Fiire)  glo
k#n

X GG (T, F2;€) ™M(F5, s e), (2)
nee cr. P : ; : g _2m62 n = . nm *m, =y,
wheret"(r,r’; €) is thet matrix for a single potential well at G(r,r';e)= ? {ZM(rnse)m  (e)Z] /(T €)
site n. LL’
We are interested in “on the_ energy she;ll angulgr_ mo- —[ZM(F ;I ) O(r —1 )
mentum components of the various scattering quantities de-
scribing elastic scattering. For the scattering-path operator + I €)ZE"(r]€)0(r,—r )18 L Sam}-

they are given by (8)

nm. .\ _ 3 3y vk (Y "MEFT )i .
e (€) fd rf drYEDhkn) 7T el Zl'(f;€) is the regular solution of the radial wave equation

while JJ(r;e) is the corresponding irregular solution.

X (kr)YL(r), ) r,r',ry, andr) are the same as in E4).
whereL=(I,m),j, are the spherical Bessel functions, afd Real systems contain a very large number of atoms. As
are complex spherical harmonics as given in Ref. 17. the scattering equatiofv) contains site indices one has to
The angular momentum expansion of the free-particlesolve an equation containing extremely large matrices. As
Green'’s function is this is out of the reach of currently available computers one

has to reduce the matrix dimensions occurring in the scatter-
ing equation. There are two possible ways for doing this:
first, one can carry out a lattice Fourier transformation and
. . transform the equation intb space, thus eliminating the site
><GLL,(an;e)j,,(kr,’n)Yf,(rr’n), (4) indices at all. This, however, is only possible if the system
. o L, considered is translationally invariant. For pure metals or
wherer is in the muffin-tin sphere arourlé, andr’ in the 4 gered alloys this is already given, but for disordered alloys
muffin-tin sphere aroun®, with n#m andr,=r—R, and  this translational invariance has to be obtained by replacing
rm=r"—Rm. G /(Rum;€) in Eq. (4) are the real-space the real system by an effective medium that represents the

GI™(F, " €)=, Y (Fmii(kry)
LL'

structure constants. They are given‘by system as well as possible. One such medium is provided by
the CPA. The second approach is to artificially cut out a
N p I LN region of the real system and to solve the multiple-scattering
Giir(Romi€) 4mk§ I Crihi(KRom) equations for this finite region, hoping that the effects one is
~ discussing are spatially limited. Instead of looking at such
* B isolated clusters one can also embed clusters in an infinite
XY (Ram), 5

medium that is translationally invariant to avoid or minimize
whereh™ denote the outgoing Hankel functions agd,,  Possible surface effects.
are the Gaunt coefficients defined'by
B. Coherent-potential approximation

Ct,_,=f d*kYE (K) YL (k) Yin(K). (6) The CPA is one of the methods to obtain an effective
medium that represents a real disordered alloy, or, more pre-

Inserting Eq.(2) into Eg. (3) and taking Eq(4) into ac-  cisely, the configurational average of all possible arrange-
count one obtains: ments of atoms that have the given macroscopic composi-
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tion. The CPA condition for finding such an effective wheret" is the single-site¢-matrix corresponding to the po-
medium implies that a single impurity of any of the tiar  tential at siten. G"™ are the real-space structure constants
more) atom species occurring in the alloy does not produceyiven in Eq.(5). No reference to an external surrounding
an extra scattering on the average. Because the conditigiedium is takerisolated cluster methodCM). In Eq.(12
refers to one lattice site the CPA is called a “single-siteye have to invert a matrix the dimension of which Is, {,
approximation.” +1)2X N, whereN is the number of atoms in the cluster. For

In the language of multiple-scattering theory one de-y purposes we chosg.,=2 and clusters up to 201 atoms,
scribes the CPA by an ordered lattice of scatterers each re%‘lving rise to matrices up to 18691809 in size.

resented by the same effective scattering amplit§t(e). One can carry out self-consistent calculations with the

The proplem s to find a sunabll‘e condition for tlmmat,flx of . cluster method by calculating charge densities from the re-
the medium. In terms of the “on the energy shell” matrix : . .

am e . sults of Eq.(12) and by iterating the potential. In the present
elements of7™ the CPA condition for an A-B alloy with paper, however, the cluster equations were only solved for
concentrationg, andcg respectively, can be written As : ' o .

A B €SP y fixed potentials that were obtained from the KKR-CPA equa-
CPA,00 CPA,00_ _CPA,00 tions of the infinite medium.

c c i 8 9 )

ATA B78 T © The second cluster method is thembedded cluster
where the angular momentum indices have been omitted fonethod(ECM). A small finite cluster is embedded in a sur-
matters of simplicity.7°"A% describes the scattering of an rounding CPA medium that corresponds to the composition
ordered array of°F”s situated at each of the lattice sites, of the cluster. In this way one hopes to minimize surface
whereas thergPA'OOdescribe the same array except that at theeffects by getting a smoother transition from the cluster into
central site there is an “impurity” of typexe {A,B}. Ex-  the surrounding space.
pressions for these impurity quantiies have been The expression for the scattering-path operator of an em-

derived 2122 bedded cluster in a CPA medium is analogous to that of a
single impurity[Eq. (10)] with the exception that simple ma-
TOPAOY gy =1+ 7CPAOY (po) =1 — (1CPA) ~ 1}~ 1,CPADO trices corresponding to the angular momentum representa-

(10)  tion have to be replaced by supermatrices also containing the

) ) ) ) ] cluster site indices. One obtains fet™ (Ref. 15:
The lattice Fourier transform gives rise to an integral over

the Brillouin zone of volumeé/g:
TET’: ({1+ 7.CPA,nm[(tn)—l_(tCPA)—l]5nm}—17_CPA,r1m)LL, .

if dBK(tPAH - G(k:e)]7L, (11 (13
Z

CPA,0
TOPAOY Va

€)=

where G(k) are thek-space structure constants. The set of7°PA"™ js the non-site-diagonal CPA scattering-path opera-
Egs.(9), (10), and(11) are the fundamental equations for the tor and is calculated by a generalization of Etfl):

effective scattering amplitude in the CPA, which is called

KKR-CPA in this particular formulation because of its re-

semblance to the formulation of KKR band theory. They CPANM 1 5 A 1 .
allow for a determination oft€™) ~* and 7" in general, T (e)zv—f dk{[ (1) "= G(k;e)]

by iteration. As one can calculate the density of states both Bz

as a function of energy and position frof®% one can < aik (f%,—ﬁn)}LL, _ (14)

carry out calculations determining the charge density self-
consistently. Starting from some reasonable guess for the
alloy potentials one solves the KKR-CPA equations, calcu- g for isolated clusters the matrices occurring in Ex®)
lates a new potential, and continues until a final self- . e the dimensionl {,,,+1)2xN. The embedded cluster
. . . ax "
consistent poten_tla_l h‘."‘S been Obta'”.ed- . method is a non-self-consistent approach because no account
_There is no limitation to the applicability of the theory g taxen of a possible change of the potentials by the exis-
arising from the size and energy dependence of the scattering, .o of various clusters. However, one hopes that as long as

amplitudes. In practical calculations one makes use of thg,e empedded clusters have about the same composition as
fact that for most metals only the first few phase shifts matteg;, surrounding CPA medium, the deviations will not be so
so that only a small number of matrix elements7oandt important. '

have to be treated.

C. Cluster methods D. Calculation of density of states and conductivity
The second way to solve the multiple scattering equations 1. Density of states

(7) is to restrict the site indices to a small finite region. Then The density of state€D0S) of a CPA medium and at the
':;e ?%U%Ir?gig?;;nbse solved in real space by simply InVertmgentral site of clusters is easily calculated using the respec-
a. 0. tive form of the scattering-path operat¢gs.(10), (12), or

_ (13)] to calculate the Green function in E@®). The DOSp
_ 1
=10 Samd =Gl (120 gt sitenis then given by
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TABLE I. Shells and clusters in a fcc lattice.

1 -
ple)=—— d® Im G(r,,,1,,€)

celln Shell No. of sites Generating vector Shell radius No. of sites
in shell in cluster
1 3 n, - *x,N, >
== Z fce”nd rZ (r,e)Z;, (r,e) 0 1 (0.0, 0.0, 0.0 0.0 1
L 1 12 (0.5, 0.5, 0.0 0.5 13
[ Im TSF’L‘E'}”( €) CPA 2 6 (1.0, 0.0, 0.0 1.0 19
o , 3 24 (1.0,0.5,0.5 15 43
Im 7., (e€) cluster(isolated or embeddéd 4 12 (1.0, 1.0, 0.0 20 55
(15) 5 24 (15,05, 0.0 25 79
6 8 (1.0,1.0,1.0 3.0 87
2. Conductivity calculation 7 48 (15,1.0,05% 35 135
. . .8 6 (2.0, 0.0, 0.0 4.0 141
Linear-response theory provides very general expressions
for transport coefficients which are exact in the limit of weak 24 (20,0505 45 165
external fields. The diagonal components of the electrical 10 12 (15 15,00 45 L
conductivity tensor of a metallic conductor at zero tempera- 11 24 (2.0,1.0,0.0 20 201

ture, i.e., with disorder originating from the atomic arrange-
ment only, can then be written as

infinite system described by the CPA, isolated clusters of a
certain size where each lattice site was occupied by one of
the alloy potentials, or clusters of a given size occupied by
) said potentials but embedded in a CPA medium. In all cases
HereV is the volume of the system, whed¢ denotes the e gensity of states and the electrical conductivity were cal-
current operator in thgth spatlal dlr(.ECtIOI’].. The average has jjated. Clearly, only the single-site scattering ca3eA) is

to be taken over all possible configurations of the systemyeated fully self-consistently in this way, whereas the treat-
The experimentally accessible conductivity is obtained byment of the clusters was only approximately self-consistent.

T, €)= %(Tr[J“ Im G(€)J* Im G(€)])cons. (16)

settinge= eg in Eq. (16). _ However, as in most calculations only clusters were permit-
In terms of the scattering-path operator the Kubo-teq that had compositions corresponding to the macroscopic
Greenwood equation can be rewritteri’as concentration, deviations from self-consistency should be

) small.
_ me Angular momentum expansions were carried out up to a
Tunl €)= 3 E SZ1'222 maximum value ofl=2 in all cases. A scalar relativistic

mh°V 21,2, mn Lqy,Lo,Lg,Ly _ ) Ml Le . ! )

approach including all relativistic effects except spin-orbit
XM (20,22) 71 (20) 30 (21, 20) interaction was chosen. The Fermi energies determined in

the KKR-CPA calculations were used for all the cluster cal-

X TE$_4(22)>conf1 (17) culations.

Two types of clusters were generated: spherical clusters,
wheres, , =26, ,—1, andz; andz, are the complex in which all lattice sites around a given central site up to a
energiesz; ,= exin, with »—0. 7"" are the cluster quan- given cluster radius were included, and rectangular clusters
tities defined in Eqs(12) and(13) while the current operator containing all lattice sites within the space spanned by three
is given by orthogonal lattice vectors. Table | lists the size of spherical
clusters and the number of sites in such clusters. Rectangular
clusters were constructed as follows: we started from the 4
atoms in the fcc unit cell. In the first step we translated the
(18) atoms from the y=0, z=0) plane in thex direction by the
lattice constand. In the next step the atoms from thg (
For the case of a translationally invariant CPA medium the— g2, z=d/2) plane were translated indirection too. The
Site index in Eq(l?) can be eliminated by a transformation same procedure was then app“ed in ;hendz directions_
to k space. Compact expressions for the conductivity can b§he number of translations need not be the same in each
obtained® direction. Table Il shows the dimensions of some rectangular
clusters obtained with this construction.

Ill. CALCULATIONS The occupations of each lattice site of a given cluster
were determined by using a random number generator. The
occupation probability of each atom type was assumed to be

For the calculation of the electronic structure of randomproportional to the macroscopic concentration of the respec-
alloys and finite clusters self-consistent alloy potentials werdgive component. For most calculations an additional bound-
generated in a first step by iterating the KKR-CPA equationsary condition was imposed on the construction of configura-
until charge self-consistency was achievédhese poten- tions: only configurations in which the number Afand B
tials were used as a starting point for all further electronicatoms corresponded to their macroscopic concentratmps,
structure calculations. Three situations were considered: thendcg, respectively, were considered. For AgBgg alloy,

ieh J
I (2.7 ) = — —— a3 ZM(F,2) — 2 (T, 2').
|_|_( ) m cell m m L( m )O-)rlu |_( m )

A. General parameters and definitions
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TABLE Il. Rectangular clusters in a fcc lattice. 40 T T T T T T
No. of No. of No. of No. of & i
X translations y translations z translations sites 30 .
0 0 0 4 T 25| E
&
+ 0 0 6 = 20 1
1 1 1 14 8
3 2 1 30 Q 15 | qoconf - .
4 4 3 90 ok I Soconf o ]
6 6 4 192 : :
5| : 150 conf -------- N
8192 conf
e.g., only configurations containing 208tand 80%B atoms 0
in the cluster were allowed. If necessary the occupation num- 40
bers were rounded to the next integer. Such configurations ' '
will be called “restricted” configurations. 35 8
Furthermore, in the configurational averages it was en- a0 L ]
sured that,N of a total of N configurations had aA atom
at the central site, the remainicgN configurations having a EZ 25 T
B atom in the center. This condition is important only for the = o4 L _
DOS calculation which is sensitive to the occupation of the 4
a 15 4

central site.

Three different alloy systems were treated: the fcc alloy 10+
systems Ag-Pd and Cu-Pt and the fcc alloy WMigy. Ag-Pd
is a “classical” alloy for discussing the electronic structure

8192 conf
of disordered alloys. Already Mott used this alloy to demon- 0 ' ' ' ' ' '

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

strate the influence af bands on the transport properties of Energy [Ryd]

alloys’® and many other authors did the same later. Cu-Pt is
known to have a high residual resistivity that makes it attrac- FIG. 1. Configurationally averaged density of states of spherical
tive for cluster calculations as will be explained later. single-shell(13 atom$ Ag-Pd clustersiembedded in a CPA me-
Mo,gNigy has an even higher resistivity and was used fordium, upper plot; isolated, lower plotas a function of energy.
cluster calculations by Nicholson and BrownTherefore, Varying number of random configuratiofistricted except for the
this alloy was also included in order to be able to comparegase of 8192 configuratiopscluster occupation in first shell: 6
results with those of Ref. 11 in a later stage of the work when<Ag, 6xPd. Vertical line: Fermi energy.

short-range order is to be considered. Various sets of calci%ér the first shell contains only on& atom, the remaining

Ifatlorr]ls were Camﬁd out: tl;ehnL!mbelr %f clonflguratrl]ons use toms being of typ®, two diagonal components of the con-
or the average, the size of the involved clusters, the embedcivity tensor are identical.

ding medium(none or CPA and the type of the clusters
(spherical or rectangulawere varied. C. Calculations for entire bands

In a first set of calculations the density of states and the
conductivity (and resistivity were determined for energies

Prior to the actual calculations some tests were performedovering the entirel band and some of the region above and
to check the correct implementation of the formalism. All below, i.e., between-0.1 and 0.7 Ry above the muffin-tin
possible configurations of a single-shell clustene central zero for AggyPdy,, between 0.0 and 0.7 Ry above the
atom plus 12 neighboring atomi an fcc lattice, i.e., £  muffin-tin zero for CysPts, and between 0.0 and 1.0 Ry
=8192 configurations, were divided into equivalence classeabove the muffin-tin zero for MgNigy. Calculations were
characterized by their equivalence under one of the 48 synzarried out for each of a given set of restricted cluster con-
metry operations of the cubic symmetry group. There ardigurations and for various cluster sizes. The single results
288 such equivalence classes. were then averaged yielding configurationally averaged den-

The following tests were successfully carried ¢itthe  sity of states and resistivities.
density of states and the trace of the conductivity tensor are For single shell cluster§l3 atoms of silver and palla-
identical for all members of one particular equivalence classdium atoms, various configurational averages including from
(ii) although various configurations belonging to the samel0 to 8192(i.e., all, but of which only the 288 inequivalent
equivalence class in general yield different diagonal eleconfigurations were treated explicithconfigurations were
ments of the conductivity tensor, the difference is alwayscarried out in order to be able to assess the importance of the
merely a permutation of the three spatial compone(iii9; number of configurations necessary for a correct representa-
while for general occupations of the clusters wahor B tion of disorder. Figure 1 shows the density of states at the
atoms the three diagonal components of the conductivity tencentral site of a single shell spherical cluster calculated by
sor are different, degeneracies occur whenever the occuptiie embedded and isolated cluster method. Figure 2 shows
tion shows certain symmetries. If, e.g., in a single shell clusthe corresponding resistivities.

B. Symmetry tests
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600 T 40 T
35 i
500 |
— 30 E
400 - 150 conf -------- . = o
T 8192 conf T ® 1
o €
g 300 | 1 = 20 7
3
a a 15 1
200 E
10 T
100 E
5
0 L 0 !
600 T 40 T LN T ; T T T
35 | i P
500 E ! P
30 Pt
400 . 5 o5 y .: o ]
3 & ¥ 4
[5] = 4 3
i 300 | 4 = 20} N ! )
= 1) T ! -y
o o) ! | \
15 ! ! \
200 |- . o i /
100 - 150 conf ------- 7] .
8192 conf
0 1 1 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Energy [Ryd]

0.2 0.3 0.4 0.5 0.6 0.7
Energy [Ryd]

FIG. 2. Same as Fig. 1 for resistivity. FIG. 3. Configurationally averaged density of states of spherical
Ag-Pd clusters of various sizéembedded in a CPA medium, upper
Another objective of the calculations was to investigateplot; isolated, lower plgtas a function of energfaveraged with 10
the behavior of the density of states and the resistivity as theestricted configurations, occupation of clusters: 50% Ag, 50% Pd
number of shells is increased. Ten randomly chosen reVertical line marks Fermi energy.
stricted configuraltions were used fo_r t.he configurational ave luster results in Fig. 8 to allow for displaying all results in
erage and spherical clusters cpntalnmg up to seven.shel e plot. In Fig. 7 the individual results for the density of
(135 atoms were cons_tructed. Flg_ure 3 shows the density 0fstates are marked differently according to the type of atom in
states at the central site of spherical Ag-Pd clusters for Varig o center of the cluster.
ous cluster sizes calculated by the isolated and embedde
cluster method. The clusters consist of equal numbers of Ag
and Pd atoms. Figure 4 compares the resistivity of isolated i ) ,
and embedded clusters of various sizes. In all cases the re- A third set of calculations was devoted to the comparison
sults of CPA calculations are also shown for matters of com®f different alloys. For this the whole range of Ag-Pd and
parison. Figures 5 and 6 give analogous data as shown in  ggg
Fig. 4 for the alloys CgyPtso and Mg,gNigg ICM calculations
only. 500 |

E. Calculations for varying alloy compositions

‘|I T o T
% Osh ICM « 0sh ECM

D. Calculations at the Fermi energy 400

A second set of calculations was carried out at the Fermi 300 [
energy only. Spherical clusters containing up to 11 shells
(201 atom$ were considered. The average was again per- 200

formed over 10 restricted configuratiofexcept for the zero-

p nQ2cm]

CPA 7sh E’C"h;{m:

shell cluster, which only contains the central atom where 100 |

only the two possible configurations were usethe three o . . . . . .

alloys AgsoPdsg, CusgPtsg, and MaggNigy were considered. 01 0 01 o.2E 0.3[R d10.4 05 06 07
nergy [Ry

Figures 7 and 8 show the density of states and the resistivity
of clusters plotted as a function of cluster s{zatal number FIG. 4. Configurationally averaged resistivity of spherical
of shells and atoms givenThe plots show the results for the ag-pd clusters of various size@mbedded in a CPA medium,
single configurations as well as for the average. The corremarked ECM:; isolated clusters, marked ICKs a function of en-
sponding CPA results are given by horizontal lines in Fig. 7.ergy (averaged with 10 restricted configurations, occupation of
whereas the CPA resistivity has been subtracted from thelusters: 50% Ag, 50% BdVertical line marks the Fermi energy.
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600 Total number of atoms
1 13 19 43 55 79 87 135 141 165 177 201
500 1 1 1 1 1 1 6 1 ¥ 1 1 T
20 F Ag5,Pdsg v ECMg R
v v v % ' v ¥
_ 400 of v v ¥ 5 ¢ % v §ox 3 gy
§ 0 £ & & & & & & & A & & 2
G 300 T T T T T T T T T T T T
S ICM
= 20 | .
200
or  t vy ¥ g v g v 7 35 ¥ ]
00 0 LT 4 4 4 4 3 4 4 4 & 3
0 E Clu F;t T T T T T T T T T T
0 01 02 03 04 05 06 07 @€ 20} O . ECM
Energy [Ryd] % 0L 3 ¥ 3 § o § ¥ 3 ¢ 3 i 5 |
: . Q 2 A & @ ' N
FIG. 5. Same as Fig. 4 for Cu-Rinly isolated clusteys Occu- o 5 N S M M M M
pation of clusters: 50% Cu, 50% Pt. 00 ICM
Cu-Pt alloys was considered. Figures 9 and 10 show resis- L o v g ¥ v . ¥ |
e . . 10 X _ - _x_ _______ ¥ _i____.xﬂ——x--uv“__g_-_—*
tivities at the Fermi energy averaged over 10 restricted ran- 0 - . L
dom configurations of isolated clusters for each alloy as a
function of concentration. Spherical clusters of various sizes L
up to 11 shellg201 atom$ were considered. CPA resistivi- ¥ —f—F—% 5 3 -
ties are given for matters of comparison. &
IV. DISCUSSION t
v
A. Configurational averaging j X
o . . 10} & “ a “ a .
In order to assess the sensitivity of the configurationally T .
aver:?\ged results to'the numper of qonflguratlons, various cal- o 1 2 3 4 5 5 7 8 10 11
culations were carried out with a single-shell clugtEs at- Total number of shells

oms based on various configuration numbers ranging from FIG. 7. Density of states of isolateiCM) and embedded

10 to 8192. One can see from Fig. 1 tligtthe density of ) .
states shows a certain sensitivity to the number of configugECM) AgsPdg, CusgPtsy, and MagNig, clusters at the Fermi en

. : - ergy. Component projected DOS for single configuratichsom
rations but only fpr enelrgles Clpse to the band edgasfor ._in the center, up triangle®® atom in the center, down triangles,
most other energies quite precise results are already obtaingfdi, pos not concentration weighteand the corresponding con-

for 10 configurationsiii) the same is true for the resistivity figrational averages of total DOBrossekare shown. CPA results
shown in Fig. 2 andiv) the full average is a bit different are given by horizontal lines.

from the averages that merely contain restricted configura-

tions due to the presence of the full range of configurations. o

These findings are important because they allow us to cor/PPer plol. This is easy to understand: for the zero-shell
fine the calculations to a fairly low number of configurations cluster” this is exactly true, owing to the definition of the

thus saving much computation time. CPA as single-site average. For larger shells the cluster re-
sults deviate from the CPA values for two reasons: First, as
B. Shell size dependence of density of states only 10 configurations are taken into account in the configu-

rational average, the sampling of disorder is not perfect, thus

The densities of states for the CPA and for embedde(ile : o . .
. . ading to some deviationsee Fig. 1L As will be shown
clusters do not deviate from each other very m(sge Fig. 3 later, the density of states is quite sensitive to the environ-

600 — — . . ment of a cluster. The restricted configurational average
[ ; therefore might influence the density of states. Second, even
500 |- if all configurations were included in an averagehich is
impractical for large cluster sizeshe DOS would deviate
_ 4o0r from the CPA because, on the one hand, the embedded clus-
5 ter formalism is a non-self-consistent method, and on the
g 800 - other hand, the cluster method includes multisite effects that
= ol lead to a more complex electronic structure.
The density of states of isolated clustéfsg. 3 lower
100 L plot) is quite different from that of embedded clusters. This
is because especially for small clusters the neighborhood of
0 I L the central site is quite different in an isolated cluster as
0 0.2

08 1 compared to an embedded cluster. Figure 3 nicely shows
how the bands are formed as the cluster size is increased. For

FIG. 6. Same as Fig. 4 for Mo-Nbnly isolated cluste)s Oc-  the zero-shell “cluster’(only central atomtwo pronounced
cupation of clusters: 20% Mo, 80% Ni. peaks are present. They are the sum of the density of states

0.4 0.6
Energy [Ryd]
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Total number of atoms 260 ER— T T T T T T T
1 13 19 43 55 79 87 135141 165 177 201 240 | TR geme g i
600 I :I T T T T T T T T T T 220 T B EL.EI""EI 4
R AgsPdsy ECM —-am—- 200 |- ‘e,_,,...e..--»---'Z"_",:'g:::f_._._._.':.22: ,,,,,,,, el
P 180 | gummo 0 e A
. AgsoPdgg ICM s T 160 F oo S 3sh 8- 4
P S 140 8sh ~e-- A
500 - a CugoPlso ECM - g 120} 11sh ——a--
3\\ CusgPtso ICM —-m— & 128 - CPA —e— 1
MoygNigg ECM ---c--- 60 .
40 .
400 - MoggNigy ICM -~ 20 | i
'E' 0 1 1 1 1 1 1 1 1 1
S 0 10 20 30 40 50 60 70 80 90 100
g_ Pt concentration [at. %]
é 300 FIG. 10. Same as Fig. 9 for Cu-Pt.
Q
|
3 and the cluster density of states moves closer and closer to-
8 wards the corresponding rectangular shaped density of states
200 L L - of the CPA. However, one can still see some oscillations of
BB gl E\‘ the DOS especially near the band edges even for seven shells
et B (135 atomg This is typical for finite systemésee Refs. 20
I\i‘-‘-'i-'-‘:i%‘ ----- N and 26 for similar calculations Only in the limit of very
e e T | | large(infinite) clusters is the density of states expected to get
lii rounded off near the band edges and get close to the CPA
’ !l!l result. However, even in this case multisite effects would
lead to some residual differences.
0 1 1 1 1 1 1 1 1 1 1 1 1

FIG. 8. Resistivities of isolatedlCM) and embeddedECM)
clusters at the Fermi energy for &fdsy, CusoPtsg, and MggNigg.

3 4 5 7 8 9
Total number of shells

10 11

C. Shell size dependence of resistivity

Figures 4 to 6 show that the tendency observed for the
density of states can also be found for the resistivity: Cluster
resistivities get closer to the corresponding CPA resistivities

Results for the ten restricted configurations and the correspondingS the shell number is increased. This is true for both types of
configurational averages are shown. Resistivities are given relativglusters Three energy regimes can be distinguistigdn

to the CPA

resistivity (AgyPdyp, 23.1u0 cm; CugPly,

80.2 Q) cm; Mo,gNigy,120 ) cm).

of a single silver and a single palladium atom. Both densities
of states are broadened in energy because one is dealing wj
energies belonging to the continuous spectrum of the singlgIu
atom potentials. The two peaks are centered at the energi
where the two components have thdilike scattering reso-
nances. As the cluster size is increaseddtmands build up

the low energy regime the cluster resistivity, especially that
of isolated clusters, takes very high values exceeding the
CPA resistivity by a factor of 50 and more. This applies to

| three alloys investigatedii) In an intermediate regime,
which is almost the same as the regime of thibands, the
ster resistivities get quite close to the CPA as the cluster
e is increased. Embedded clustgesults only shown for
Ag-Pd) lead to results slightly closer to the CPA than iso-
lated clusters in this regiméiii ) Finally, for the energy re-
gime above tha band complex, i.e., above the Fermi en-

zig - Tt ] ergy, the cluster resistivities deviate more from the CPA
200 | _ again. Especially Ag-Pd, where the CPA resistivity drops to
200 |- . very low values above the Fermi energy, shows this strong
180 - T discrepancy. Moreover, for high energies embedded and iso-
§ o0 ] lated cluster resistivities converge towards the same value
9 120 ] (see Fig. 4.
a 100 L 4 The explanation for the different regimes is straightfor-
80 - . ward: A cluster approach can only yield a correct resistivity
60 - T if the mean free path of the conduction electrons is in the
Zg i i range of the cluster size or smaller. If the mean free path is
0 A ; . . . ) . A much longer the scattering processes that are responsible for
0 10 20 30 40 50 60 70 80 90 100 the finite resistivity cannot be expected to be included in the

Pd concentration [at. %]

cluster representation anymore. As the resistivity takes its

FIG. 9. Configurationally averaged resistivity of Ag-Pd alloys highest values for energies in tliebands of a transition
calculated at the Fermi energy with finite isolated clustaxerage ~ Metal (corresponding to short mean free pathise cluster
over 10 restricted configurations, occupation with number of Agmethods yield their best results in this energy regime. Using
and Pd atoms corresponding to macroscopic concentration. CPfhe CPA one clearly does not have this problem because the
results are given for matters of comparison. CPA treats an infinite averaged medium and is therefore ca-
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Energy [Ryd] D. Density of states at the Fermi energy
0 01 02 03 04 06 07
T - - - - - - The densities of states of various isolated and embedded
10 | ya clusters at the Fermi energy are shown in Fig. 7. It is evident
! that the values for individual configurations scatter greatly,
even if the atom in the centéat which the DOS is calcu-
lated is the same. The spread of the results is smaller for
isolated clusters than for embedded clusters. Looking at the
results more closely, one finds the followir(@. For the two
alloys of ans-band metalAg, Cu) with a d-band metalPd,
100 | Ratio = f(E) - . Pt), the DOS is low for thes-band atom at the center and

high for thed-band metal at the centeii) The configura-

120 | i

Ratio = f(c) ---*--- tions with thes-band metal at the center are less sensitive to

80 L i the occupation in the surrounding cluster than those with a
/ d-band metal in the centefiii) For the configurations with a
d-band metal in the center very high DOS valges., about
30 states/Ry for Ag-Pdare found for configurations with
many otheid-band metal atoms in the cluster. These findings
are not surprising if we note that for a putédband metal the
Fermi energy lies in a region where the density of states is
. high and has a rich structure as a function of energy.
Changes in the environment of édband atom therefore
cause a strong change of the DOS, whereas the DOS of an
s-band metal—in which the Fermi energy lies in the fat

Peluster /PCPA
*..
-

60 |
b * X

%,
”"‘.
X,

40 [

i
1

i

1

|

i

i

1

|

] S
i %
i :

B

H

iy

i

N

ol A

M3,

";‘gf Nal band with a low DOS—is relatively insensitive to the com-

kX i * position of its neighborhood. MgNigy with two d-band con-

] ] M ol L stituents consequently shows about the same behavior of the
0 01 02 03 04 05 06 07 08 09 1 1.1 12 DOS no matter which of the atoms is in the center.

o [1/ue cm] The averages of 10 restricted configurati¢msly two for

FIG. 11. Ratio of cluster and CPA resistivities { st/ ocpa) zgro-shell “clusters’)_can be compared with the CPA den-
for AgsgPdso shown as a function of energy and CPA conductivity, f'ty of s”tates. One f'”‘?‘? tha) for a zero-shell _embedded
f(E) andf(o), respectively. Calculations based on isolated seven- cluste“r the two quantities are the same by defl_nltlor} of the
shell clusters and 10 restricted configurations. CPA,; (i) the averaged embedded cluster DOS is quite close

to the CPA DOS for all cluster sizésee discussion in Sec.
pable of treating any mean free path. In contrast, approximalV B); and (iii) the averaged isolated cluster densities of
tions with small clusters only work well for systems with states deviate more from the CPA DOS especially for small
strong scatteringhigh resistivity. It is important to empha- clusters. The isolated zero-shell “cluster” DOS is far away
size that the fact that cluster resistivities getting closer to thérom the CPA result in MgNigg, in which the Fermi energy
corresponding CPA values with increasing cluster sizes doeis close to the band edge where such deviations tend to be
not mean that there is an actual convergence. Convergeneeore pronounceg@see Sec. Il D and Fig.)3and quite close
cannot be expected because even a very lanfiaite) clus-  to the CPA DOS for AgyPdso, in which the Fermi energy is
ter would give results deviating from the CPA because clusfar above the band edge. For large isolated clusters all den-
ter calculations include multisite effects that cannot besities of states move towards the CPA as expected.
treated within a single-site formalism such as the CPA.

That the interpretation given is indeed plausible can be
seen by looking at the deviation of cluster and CPA resistiv-
ities expressed by the ratjgysied pcpa @s a function of both Turning to the resistivity, which is shown in Fig. 8 for ten
energy and CPA conductivity as it is displayed in Fig. 11.restricted configurations and as a configurational average for
The ratio as a function of energy shows high values for lowboth isolated and embedded clusters of varying sizes, one
energies, i.e., below about 0.1 Ry, and energies above abounetes the following(i) In contrast to the density of states the
0.5 Ry as one can of course already see from Fig. 4. Lookingesistivity is strongly cluster size dependeiit) The scatter
at the ratio as a function of conductivity one finds an almosibetween individual configurations is much smaller than for
linear relationship except for the lowest energies. Thereforethe DOS.(iii) An increase of cluster size leads to averaged
the smaller the CPA conductivity i@ndicating a short mean resistivites that slowly approach the CPA resistivityhich
free path, the smaller the ratio between cluster and CPAIs represented by the value 0 in Fig. 8v) The resistivities
resistivities. Extrapolating the conductivity to zero one seedie closest to the CPA for MgNig,, followed by CugPts
that the ratio tends towards one. This means that the clustend AggPdy,. (v) Isolated and embedded clusters show a
resistivities get very close to the CPA if the mean free path isimilar tendency. For AgPds, and CugPty, isolated clusters
negligible compared to the cluster diameter. However, as allead to lower resistivities while for MgNig, the opposite is
ready pointed out, one cannot expect an exact agreemetitie. (vi) The changes in resistivity when one increases the
because of the principal differences between single-site CPAluster size are more pronounced for small clusters and when
and cluster expansions that contain multisite effects. the shell added has many atoms.

E. Resistivity at the Fermi energy
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The behavior of the density of states differs from that of 25 — T T T T T T T T 15
the resistivity because the DOS is a local quantity describing Cu-Pt mean free path -
the electronic structure at one particular location in the clus- 5 | Cu-PtICM/CPA —--=---
ter (the center, whereas for the resistivity all sites of a clus- Ag-Pd mean free path s o
ter are treated in the same way. Moreover, from what was g Ag-Pd ICMCPA —-4-- /' g 110
said in Sec. IV C one knows that the resistivity is strongly & [ Mo-Ni mean free path o/ T
shell-size dependent especially when the mean free path is in g Mo-Ni ICM/CPA / =
the range or larger than the shell diameter because then the® 10 "5
scattering process cannot be represented properly and eact !
increase in shell size adds significant contributions to the 5|
resistivity. Only when the mean free path is much shorter
than the diameter of the cluster would one expect that the 1 M S 0
resistivity saturated as a function of shell size. Such an effect 0 10 20 30 40 50 60 70 80 90 100

. . . . Concentration of Pd, Pt, Mo [at. %)]

does not clearly exist for the density of states, which is not
influenced very much by distant atoms. Forsgfts, a mean FIG. 12. Deviation of cluster from CPA resistivities expressed

free path of 1.7 nm was determined from the Boltzmannas the ratiopy,se/ pcpa @s a function compositionE= Eg). Iso-
equation as described in Ref. 27, which corresponds to abolted 11-shell clusters and an average with 10 restricted configura-
4.5 lattice spacings or slightly less than the diameter of aions were used. Moreover, the mean free path of the electrons of
five-shell cluster. For AgPd, the mean free path is about the innermost sheet of the Fermi surface is given for each alloy.
three times as long, for MgNigg it is about half the mean

free. pgth for CepPto. This expllal_n.s.well the magnitude of .realistic value for the cluster resistivity. For Mpligg, €.9.,
deviation between cluster resistivities and CPA as seen '{}1 . .
e diameter of the 11-shell cluster used is equal to four

Fig. 8, which increases from MgNigy to CuoPtyy and : LT
AgsPdy. From Fig. 8 it is also obvious that a convergencet'me$ the mean free pa(b._87_ nm. This S|tulat!o.n allows for
a quite reasonable description of the resistivity by a cluster

of the resistivity(to some “infinite cluster” value, not to the o o
CPA resistivity has not been achieved for 11-shell clusters2PProximation, although the CPA resistivity is still lower by

(201 atoms and that still larger clusters are necessary to? factor of 1.7. For alloys such as 4fd,, however, the
obtain convergence. mean free path is three times the diameter of the largest
cluster used and the resistivity based on such clusters is com-
pletely wrong.
F. Resistivity for different alloys

From what was discussed in the previous sections the re-
sults for the cluster resistivities for alloys of different com-
positions shown in Figs. 9 and 10 are not surprising. While So far only spherical clusters have been considered. It is
the CPA calculation for the alloys Ag-Pd and Cu-Pt revealamportant to raise the question of how important the particu-
the typical distorted Nordheim-like curve with a maximum lar cluster shape is. To give an answer two calculations were
near 60 and 50 at. % Pd or Pt, respectively, and the drop toarried out with spherical and rectangular clusters of a simi-
zero resistivity for the pure components, the cluster resistiviar size, namely a spherical cluster of six shé83 atomg
ities do not show this behavior. The cluster results are closesind a rectangular cluster of 90 atoms. The alloygRgs,
to the CPA resistivity for binary alloys in about the middle of was chosen and 10 restricted configurations were used for
the composition range, while the deviations are largest fothe average in both cases. The results shown in Fig. 13 show
dilute alloys. Extrapolation of cluster results to pure compo-that there is little difference between the two cluster types.
nents leads to finite resistivities while thH@nfinite) pure
metal should have zero resistivity. This comparison can be 600
visualized best by looking at the ratio between cluster resis- A
tivity and the corresponding CPA resistivity and plotting it as 500 L }
a function of compositioriFig. 12). }

The reason for the better agreement of cluster resistivities 400 |
with the corresponding CPA results for concentrated alloys § SN,
clearly again lies in the shorter mean free path in these alloys § 300 NN T
as was already discussed before. To make this clear the mear= 200 ‘"*r::_ttt::::-.\\
fre_e path is shown in Fig. 12 _and compgred to the (_jeV|at_|on Spherical cluster (87 atoms) -—--—— e |
ratio. The former was determined by using the semiclassical Rectangular cluster (90 atoms) -

Boltzmann equatioR’ The mean free path given is an aver-

age over all electrons in the innermost sheet of the Fermi 0 ! ! ! ! ! !
surface. These electrons carry at least 80% of the electric 0 0.1 0.2 ghSr [F?-g] 05 06 07
current. The remaining sheets of the Fermi surface contain eray Ry

slow electrons with a much shorter mean free path. Figure 12 F|G. 13. Resistivity of isolated spherical clusters with six shells
shows that mean free path and deviation ratjQse/Pcpa (87 atoms compared to the resistivity of isolated rectangular clus-
are nearly proportional. Therefore, the larger the mean fregrs with 90 atoms. Cluster composition £8d,. 10 restricted
path, the more one needs a large cluster in order to get @nfigurations used for averaging.

G. Influence of cluster type

100 |-
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H. Comparison to experimental resistivities It was found that especially for the conductivity a small

Because comparing calculated results with measured dafy/mPer of configurations is sufficient for the average be-
is not one of the main purposes of this paper, only a shortause the conductivity is quite insensitive to the arrangement
look is given on such data. For the t,hree aIonsOf the atoms in a cluster. Resistivities of clusters were calcu-
AgsoPdso, ClisoPlso, and MogNig, the experimental resistiv- lated and compareql Wlt_h corresponding results given py _the
ity extrapolated tor =0 is 29(Ref. 28, 82 (Ref. 3, and 117 CPA for various situations: energy dependent resistivities

(Ref. 29 (all in xQ cm), respectively. Our CPA calcula- were calculated, quantities only at the Fermi level were
tions; yield 23.1, 80.2 aﬁd 120 respéctively Reference 19iven a closer look and, finally, various alloys were treated
gives 116, cm for the latter case. The observed excellent©’ matters of comparison. The general result obtained was

agreement between experimental and calculated resistivitie SX') thg I_grgelzr t?e clu(sjtecr;, At\he c!ots_,e{_the results_the tlo the
however, is partially lost when one includes angular mo- , and(ii) cluster an resistiviies are quite close

menta up tol=3 in the calculations. The resistivity of :E(r)]gether V}/henev;ahr t?e re;'Stt'.V'ty cl)f tthe sy;tem 'lsl‘ high, or,d
Mo,Nigo, €.9., drops to 730 cm, and a similar drop is e mean free path of conduction electrons is small compare

observed for other alloy’Calculated CPA resistivities are to the cluster diameter. In the alloys considered this is true

lower than corresponding experimental values for many aI{:?Lsetzgrerrggi;ggtyliieeldingé%%’?:ggltg%gp:ﬁé' rgzgis;:;eérflr;/ei ¢
loy systems—provided that sufficiently high angular mo—me Fermi level lies in thel band. Not very much difference

menta are taken account of—indicating that there are scatte o )
ing mechanisms in real alloys that cannot be included in thevas seen between the conductivity of isolated and embedded

CPA. The cluster approximations treated in this paper coul&!USterS So that most calculations were performed within the
perhaps yield better results, although nothing definite can balmpler isolated cluster scheme.

said until a convergence with respect to the cluster size has It seems realistic that for highly resistive 6_‘”03/5 sho_rt-
been achieved. range order effects can be modeled by including statistical

weights in the configurational average. There is some hope

that the resistivity change associated with a rearrangement of

atoms after short-range ordering can be calculated this way.
By calculating the density of states and the electrical conin a forthcoming papéf the cluster methods presented in

ductivity (or resistivity of finite clusters that were either this paper will therefore be applied to some highly resistive

isolated or embedded in a surrounding CPA medium, thélloys in various states of order.

possibility for approximately representing an infinite lattice

by fin?te clusters could be evalua_ted. In the_ work presented ACKNOWLEDGMENT

here it was attempted to approximate a disordered system

described by the CPA by finite clusters and an explicit con- The work presented was funded by the Deutsche For-

figurational average over various cluster configurations.  schungs-gemeinschagfproject Cz 31/10-1
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