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Electrical conductivity of finite metallic systems: Disorder

Lucian Dulca, John Banhart, and Gerd Czycholl
Institute for Theoretical Physics, University of Bremen, Kufsteiner Str. 2, 28359 Bremen, Germany

~Received 10 November 1999!

The electrical conductivity of finite, three-dimensional clusters containing up to 201 atoms on an fcc lattice
was calculated using a combination of density functional theory, multiple-scattering theory, and the Kubo-
Greenwood equation. Isolated clusters and clusters embedded in a medium determined by the coherent-
potential approximation~CPA! were investigated. Densities of states and electrical resistivities were calculated
for various situations: varying numbers of configurations used for the configurational average, varying ener-
gies, different alloys, different cluster sizes, and, finally, two cluster types, namely, spherical and rectangular
clusters. Cluster calculations were compared to CPA calculations based on the same alloys. From this com-
parison a criterion was derived when a representation of an infinite medium by finite clusters is expected to
yield good results for the conductivity.
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I. INTRODUCTION

The electrical conductivity of multicomponent metall
systems is extremely sensitive to the microscopic arran
ment of the various atom species on the crystal lattice. T
is seen in alloys where ordered and disordered states e
Such alloys, e.g., Cu3Au, show a comparatively high resis
tivity in the disordered phase,1,2 whereas after the transitio
to the ordered state the resistivity drops to a very low va
although during the transition merely some atoms
exchanged.2,3

The theoretical treatment of transport in disordered all
has seen major advances since the advent of certain
principle methods for the calculation of the electronic stru
ture and the properties of such systems. In particular,
approach that starts from alocal density functionaldescrip-
tion of the many-particle problem, treats disorder in t
framework of thecoherent-potential approximation~CPA!
in conjunction with theKorringa-Kohn-Rostoker~KKR!
method, and uses the rigorousKubo-Greenwood formulaof
linear response theory for the transport calculation has
to excellent results for the conductivity of paramagnetic4–6

and ferromagnetic alloys.7 Even optical properties have bee
calculated making use of this formalism.8

Between perfectly ordered systems that in the limit
zero temperature do not show any electrical resistivity at
and random alloys, however, there is a wide range of syst
that shows other states of order. One example is short-ra
order that is characterized by local correlations of the lat
occupation. Like long-range order short-range order has
influence on the electrical resistivity but the relative resist
ity changes produced by this type of order are usually l
than 5%.1,9 In contrast to long-range order, which alwa
leads to a reduction of electrical resistivity, short-range or
can either increase or decrease resistivity. The theore
treatment of short-range ordered systems is difficult beca
neither Bloch’s theorem holds nor can an effective medi
be introduced in a simple way as is done for random allo
Short-range ordered systems have been treated in the fr
work of multiple-scattering theory by using small finite clu
ters. While expressions for ‘‘simple’’ electronic quantitie
PRB 610163-1829/2000/61~24!/16502~12!/$15.00
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such as the density of states10 have been obtained in a fairl
easy way, the more complicated transport quantities have
been investigated very thoroughly up to now. To the know
edge of the authors short-range order effects on the elect
conductivity have only been studied by one group from fi
principles.5,11 However, only two alloys were treated, an
problems of configurational averaging and cluster size w
not addressed.

This work aims on giving a thorough and systematic d
scription of the electrical conductivity of finite clusters fro
first principles. In order to facilitate the calculations, only t
case of disorder is treated. For this case cluster results ca
compared to conductivities obtained by applying t
coherent-potential approximation, which explicitly describ
infinite disordered systems; however, omitting certain mu
site contributions. The three main objectives of the paper
~i! to clarify the influence of cluster size and the role of t
procedure of configurational averaging,~ii ! to compare clus-
ter conductivities to corresponding CPA results, and~iii ! to
obtain predictions for which alloys or energy regimes clus
approximations are sufficiently precise to justify their app
cation in short-range order calculations.

For this either large isolated clusters are constructed
clusters are embedded in a surrounding CPA medium re
senting the corresponding disordered alloy of the same c
position. The electrical conductivity of these clusters is c
culated using the Kubo-Greenwood formula in both cas
By considering different cluster configurations and by intr
ducing statistical weights corresponding to the desired or
parameter one hopes to be able to model disorder~or short-
range order in a later stage!. By calculating conductivities for
three different alloys and for a variety of different energi
one is able to explain the expected deviations of, e.g., clu
and CPA results, and to derive rules for which situation
cluster approximation works well.

The paper is organized as follows: In Sec. II the theor
ical framework is outlined. Section III presents some fi
tests and the results of various sets of calculations. Sec
IV gives an interpretation of the results observed, which
finally summarized in Sec. V.
16 502 ©2000 The American Physical Society
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II. THEORETICAL APPROACH

A. Multiple-scattering theory

The application of multiple-scattering theory in electron
structure calculations has been discussed extensivel
literature.12–15 We therefore only give the most importa
equations relevant for the present work.

The potential function is assumed to be a collection
nonoverlapping muffin-tin potentials. The multiple-scatteri
theory leads to the following decomposition of thet-matrix
for the system with respect to lattice sites:16

T~rW,rW8;e!5(
nm

tnm~rW,rW8;e!. ~1!

The quantitiestnm are the scattering-path operators16 and
are defined by

tnm~rW,rW8;e!5tn~rW,rW8;e!dnm1 (
kÞn

E d3r 1E d3r 2tn~rW,rW1 ;e!

3G0
nk~rW1 ,rW2 ;e!tkm~rW2 ,rW8;e!, ~2!

wheretn(rW,rW8;e) is thet matrix for a single potential well a
site n.

We are interested in ‘‘on the energy shell’’ angular m
mentum components of the various scattering quantities
scribing elastic scattering. For the scattering-path oper
they are given by

tLL8
nm

~e!5E d3r E d3r 8YL* ~rŴ ! j l~kr !tnm~rW,rW8;e! j l 8

3~kr8!YL8~ r̂8!, ~3!

whereL[( l ,m), j l are the spherical Bessel functions, andYL
are complex spherical harmonics as given in Ref. 17.

The angular momentum expansion of the free-part
Green’s function is

G0
nm~rW,rW8;e!5(

LL8
YL~rŴn! j l~krn!

3GLL8~RW nm ;e! j l 8~krm8 !YL8
* ~ r̂m8 !, ~4!

whererW is in the muffin-tin sphere aroundRn and rW8 in the
muffin-tin sphere aroundRm with nÞm and rWn5rW2RW n and
rWm8 5rW82RW m . GLL8(R

W
nm ;e) in Eq. ~4! are the real-space

structure constants. They are given by18

GLL8~Rnm ;e!524p ik(
L9

i l 2 l 82 l 9CLL8
L9 hl 9

1
~kRnm!

3YL9
* ~RŴ nm!, ~5!

where h1 denote the outgoing Hankel functions andCLL8
L9

are the Gaunt coefficients defined by17

CLL8
L9 5E d3kYL* ~kŴ !YL8~kŴ !YL9~kŴ !. ~6!

Inserting Eq.~2! into Eq. ~3! and taking Eq.~4! into ac-
count one obtains:
in

f

e-
or

e

tLL8
nm

~e!5tL
n~e!dnmdLL8

1 (
kÞn

(
L9

tL
n~e!GLL9~RW nk ;e!tL9L8

km
~e!. ~7!

This is the fundamental multiple-scattering equation ‘‘
the energy shell.’’ It givestLL8

nm (e), in terms oftL
n(e), which

are completely determined by the phase shifts, and the st
ture constantsGLL8(R

W
nm ;e), which depend only on the spa

tial arrangement of the scattering sites. Equation~7! is valid
for any arrangement of potentials even if we have a differ
scatterer at each site. Thus, it is a good starting poin
discuss pure metals as well as alloys with an arbitrary s
of order.

A general expression for the Green’s functionG(rW,rW8;e)
for the assembly of scatterers that will be of use in la
sections when we wish to obtain expressions for observa
is19

G~rW,rW8;e!5
2me

\2 (
LL8

$ZL
n~rWn ;e!tLL8

nm
~e!ZL8

* m
~rWm8 ;e!

2@ZL
n~rWn ;e!JL*

n~rWn8 ;e!u~r n82r n!

1JL
n~rWn ;e!ZL*

n~rWn8 ;e!u~r n2r n8!#dLL8dnm%.

~8!

ZL
n(rW;e) is the regular solution of the radial wave equati

while JL
n(rW;e) is the corresponding irregular solution

rW,rW8,rWn , andrWm8 are the same as in Eq.~4!.
Real systems contain a very large number of atoms.

the scattering equation~7! contains site indices one has
solve an equation containing extremely large matrices.
this is out of the reach of currently available computers o
has to reduce the matrix dimensions occurring in the sca
ing equation. There are two possible ways for doing th
first, one can carry out a lattice Fourier transformation a
transform the equation intok space, thus eliminating the sit
indices at all. This, however, is only possible if the syste
considered is translationally invariant. For pure metals
ordered alloys this is already given, but for disordered allo
this translational invariance has to be obtained by replac
the real system by an effective medium that represents
system as well as possible. One such medium is provided
the CPA. The second approach is to artificially cut ou
region of the real system and to solve the multiple-scatter
equations for this finite region, hoping that the effects one
discussing are spatially limited. Instead of looking at su
isolated clusters one can also embed clusters in an infi
medium that is translationally invariant to avoid or minimiz
possible surface effects.

B. Coherent-potential approximation

The CPA is one of the methods to obtain an effect
medium that represents a real disordered alloy, or, more
cisely, the configurational average of all possible arran
ments of atoms that have the given macroscopic comp
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tion. The CPA condition for finding such an effectiv
medium implies that a single impurity of any of the two~or
more! atom species occurring in the alloy does not produ
an extra scattering on the average. Because the cond
refers to one lattice site the CPA is called a ‘‘single-s
approximation.’’

In the language of multiple-scattering theory one d
scribes the CPA by an ordered lattice of scatterers each
resented by the same effective scattering amplitudetCPA(e).
The problem is to find a suitable condition for thist matrix of
the medium. In terms of the ‘‘on the energy shell’’ matr
elements oftnm the CPA condition for an A-B alloy with
concentrationscA andcB respectively, can be written as20

cAtA
CPA,001cBtB

CPA,005tCPA,00, ~9!

where the angular momentum indices have been omitted
matters of simplicity.tCPA,00 describes the scattering of a
ordered array oftCPA’s situated at each of the lattice site
whereas theta

CPA,00describe the same array except that at
central site there is an ‘‘impurity’’ of typeaP$A,B%. Ex-
pressions for these impurity quantities have be
derived :21,22

ta
CPA,00~e!5$11tCPA,00@~ ta!212~ tCPA!21#%21tCPA,00.

~10!

The lattice Fourier transform gives rise to an integral o
the Brillouin zone of volumeVBZ :

tCPA,00~e!5
1

VBZ
E d3k@~ tCPA!212G~kW ;e!#21, ~11!

whereG(kW ) are thek-space structure constants. The set
Eqs.~9!, ~10!, and~11! are the fundamental equations for th
effective scattering amplitude in the CPA, which is call
KKR-CPA in this particular formulation because of its r
semblance to the formulation of KKR band theory. Th
allow for a determination of (tCPA)21 andtCPA,00, in general,
by iteration. As one can calculate the density of states b
as a function of energy and position fromtCPA,00, one can
carry out calculations determining the charge density s
consistently. Starting from some reasonable guess for
alloy potentials one solves the KKR-CPA equations, cal
lates a new potential, and continues until a final se
consistent potential has been obtained.

There is no limitation to the applicability of the theor
arising from the size and energy dependence of the scatte
amplitudes. In practical calculations one makes use of
fact that for most metals only the first few phase shifts ma
so that only a small number of matrix elements oft and t
have to be treated.

C. Cluster methods

The second way to solve the multiple scattering equati
~7! is to restrict the site indices to a small finite region. Th
the equations can be solved in real space by simply inver
Eq. ~7!. One obtains

tLL8
nm

5@~ tL
n!21dnmdLL82GLL8

nm
#LL8

21 , ~12!
e
on
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p-
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wheretn is the single-sitet-matrix corresponding to the po
tential at siten. Gnm are the real-space structure consta
given in Eq. ~5!. No reference to an external surroundin
medium is takenisolated cluster method~ICM!. In Eq. ~12!
we have to invert a matrix the dimension of which is (l max

11)23N, whereN is the number of atoms in the cluster. F
our purposes we chosel max52 and clusters up to 201 atom
giving rise to matrices up to 180931809 in size.

One can carry out self-consistent calculations with
cluster method by calculating charge densities from the
sults of Eq.~12! and by iterating the potential. In the prese
paper, however, the cluster equations were only solved
fixed potentials that were obtained from the KKR-CPA equ
tions of the infinite medium.

The second cluster method is theembedded cluste
method~ECM!. A small finite cluster is embedded in a su
rounding CPA medium that corresponds to the composit
of the cluster. In this way one hopes to minimize surfa
effects by getting a smoother transition from the cluster i
the surrounding space.

The expression for the scattering-path operator of an
bedded cluster in a CPA medium is analogous to that o
single impurity@Eq. ~10!# with the exception that simple ma
trices corresponding to the angular momentum represe
tion have to be replaced by supermatrices also containing
cluster site indices. One obtains fortnm ~Ref. 15!:

tLL8
nm

5„$11tCPA,nm@~ tn!212~ tCPA!21#dnm%21tCPA,nm
…LL8 .

~13!

tCPA,nm is the non-site-diagonal CPA scattering-path ope
tor and is calculated by a generalization of Eq.~11!:

tLL8
CPA,nm

~e!5
1

VBZ
E d3k$@~ tCPA!212G~k;e!#21

3eikW•(RW n2RW m)%LL8 . ~14!

As for isolated clusters the matrices occurring in Eq.~13!
have the dimension (l max11)23N. The embedded cluste
method is a non-self-consistent approach because no acc
is taken of a possible change of the potentials by the e
tence of various clusters. However, one hopes that as lon
the embedded clusters have about the same compositio
the surrounding CPA medium, the deviations will not be
important.

D. Calculation of density of states and conductivity

1. Density of states

The density of states~DOS! of a CPA medium and at the
central site of clusters is easily calculated using the resp
tive form of the scattering-path operators@Eqs.~10!, ~12!, or
~13!# to calculate the Green function in Eq.~8!. The DOSr
at siten is then given by
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r~e!52
1

pEcell n
d3r Im G~rWn ,rWn ,e!

52
1

p (
LL8

E
cell n

d3rZL
n~rW,e!ZL8

* ,n
~rW,e!

3H Im ta,LL8
CPA,nn

~e! CPA

Im tLL8
nn

~e! cluster~isolated or embedded!.

~15!

2. Conductivity calculation

Linear-response theory provides very general express
for transport coefficients which are exact in the limit of we
external fields. The diagonal components of the electr
conductivity tensor of a metallic conductor at zero tempe
ture, i.e., with disorder originating from the atomic arrang
ment only, can then be written as

smm~e!5
\

pV
^Tr@Jm Im G~e!Jm Im G~e!#&con f . ~16!

Here V is the volume of the system, whereJm denotes the
current operator in themth spatial direction. The average ha
to be taken over all possible configurations of the syste
The experimentally accessible conductivity is obtained
settinge5eF in Eq. ~16!.

In terms of the scattering-path operator the Kub
Greenwood equation can be rewritten as23

smm~e!52
me

2

p\3V
(

z1 ,z2

sz1 ,z2(mn
(

L1 ,L2 ,L3 ,L4

3^JL4L1

mm ~z1 ,z2!tL1L2

mn ~z1!JL2L3

nm ~z1 ,z2!

3tL3L4

nm ~z2!&con f , ~17!

where sz1 ,z2
52dz1 ,z2

21, and z1 and z2 are the complex

energiesz1,25e6 ih, with h→0. tmn are the cluster quan
tities defined in Eqs.~12! and~13! while the current operato
is given by

JLL8
mm

~z,z8!52
ie\

m E
cell m

d3r mZL
m~rWm ,z!

]

]r m
ZL8

m
~rWm ,z8!.

~18!

For the case of a translationally invariant CPA medium
site index in Eq.~17! can be eliminated by a transformatio
to k space. Compact expressions for the conductivity can
obtained.23

III. CALCULATIONS

A. General parameters and definitions

For the calculation of the electronic structure of rando
alloys and finite clusters self-consistent alloy potentials w
generated in a first step by iterating the KKR-CPA equatio
until charge self-consistency was achieved.24 These poten-
tials were used as a starting point for all further electro
structure calculations. Three situations were considered:
ns

al
-
-

.
y

-

e

e

e
s

c
he

infinite system described by the CPA, isolated clusters o
certain size where each lattice site was occupied by on
the alloy potentials, or clusters of a given size occupied
said potentials but embedded in a CPA medium. In all ca
the density of states and the electrical conductivity were c
culated. Clearly, only the single-site scattering case~CPA! is
treated fully self-consistently in this way, whereas the tre
ment of the clusters was only approximately self-consiste
However, as in most calculations only clusters were perm
ted that had compositions corresponding to the macrosc
concentration, deviations from self-consistency should
small.

Angular momentum expansions were carried out up t
maximum value ofl 52 in all cases. A scalar relativistic
approach including all relativistic effects except spin-or
interaction was chosen. The Fermi energies determine
the KKR-CPA calculations were used for all the cluster c
culations.

Two types of clusters were generated: spherical clust
in which all lattice sites around a given central site up to
given cluster radius were included, and rectangular clus
containing all lattice sites within the space spanned by th
orthogonal lattice vectors. Table I lists the size of spheri
clusters and the number of sites in such clusters. Rectang
clusters were constructed as follows: we started from th
atoms in the fcc unit cell. In the first step we translated
atoms from the (y50, z50) plane in thex direction by the
lattice constantd. In the next step the atoms from the (y
5d/2, z5d/2) plane were translated inx direction too. The
same procedure was then applied in they and z directions.
The number of translations need not be the same in e
direction. Table II shows the dimensions of some rectangu
clusters obtained with this construction.

The occupations of each lattice site of a given clus
were determined by using a random number generator.
occupation probability of each atom type was assumed to
proportional to the macroscopic concentration of the resp
tive component. For most calculations an additional bou
ary condition was imposed on the construction of configu
tions: only configurations in which the number ofA and B
atoms corresponded to their macroscopic concentrationscA
andcB , respectively, were considered. For anA20B80 alloy,

TABLE I. Shells and clusters in a fcc lattice.

Shell No. of sites Generating vector Shell radius No. of si
in shell in cluster

0 1 ~ 0.0, 0.0, 0.0! 0.0 1
1 12 ~ 0.5, 0.5, 0.0! 0.5 13
2 6 ~ 1.0, 0.0, 0.0! 1.0 19
3 24 ~ 1.0, 0.5, 0.5! 1.5 43
4 12 ~ 1.0, 1.0, 0.0! 2.0 55
5 24 ~ 1.5, 0.5, 0.0! 2.5 79
6 8 ~ 1.0, 1.0, 1.0! 3.0 87
7 48 ~ 1.5, 1.0, 0.5! 3.5 135
8 6 ~ 2.0, 0.0, 0.0! 4.0 141
9 24 ~ 2.0, 0.5, 0.5! 4.5 165

10 12 ~ 1.5, 1.5, 0.0! 4.5 177
11 24 ~ 2.0, 1.0, 0.0! 5.0 201
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e.g., only configurations containing 20%A and 80%B atoms
in the cluster were allowed. If necessary the occupation n
bers were rounded to the next integer. Such configurat
will be called ‘‘restricted’’ configurations.

Furthermore, in the configurational averages it was
sured thatcAN of a total ofN configurations had anA atom
at the central site, the remainingcBN configurations having a
B atom in the center. This condition is important only for t
DOS calculation which is sensitive to the occupation of
central site.

Three different alloy systems were treated: the fcc al
systems Ag-Pd and Cu-Pt and the fcc alloy Mo20Ni80. Ag-Pd
is a ‘‘classical’’ alloy for discussing the electronic structu
of disordered alloys. Already Mott used this alloy to demo
strate the influence ofd bands on the transport properties
alloys25 and many other authors did the same later. Cu-P
known to have a high residual resistivity that makes it attr
tive for cluster calculations as will be explained late
Mo20Ni80 has an even higher resistivity and was used
cluster calculations by Nicholson and Brown.11 Therefore,
this alloy was also included in order to be able to comp
results with those of Ref. 11 in a later stage of the work wh
short-range order is to be considered. Various sets of ca
lations were carried out: the number of configurations u
for the average, the size of the involved clusters, the emb
ding medium~none or CPA! and the type of the cluster
~spherical or rectangular! were varied.

B. Symmetry tests

Prior to the actual calculations some tests were perform
to check the correct implementation of the formalism. A
possible configurations of a single-shell cluster~one central
atom plus 12 neighboring atoms! in an fcc lattice, i.e., 213

58192 configurations, were divided into equivalence clas
characterized by their equivalence under one of the 48 s
metry operations of the cubic symmetry group. There
288 such equivalence classes.

The following tests were successfully carried out~i! the
density of states and the trace of the conductivity tensor
identical for all members of one particular equivalence cla
~ii ! although various configurations belonging to the sa
equivalence class in general yield different diagonal e
ments of the conductivity tensor, the difference is alwa
merely a permutation of the three spatial components;~iii !
while for general occupations of the clusters withA or B
atoms the three diagonal components of the conductivity
sor are different, degeneracies occur whenever the occ
tion shows certain symmetries. If, e.g., in a single shell cl

TABLE II. Rectangular clusters in a fcc lattice.

No. of No. of No. of No. of
x translations y translations z translations sites

0 0 0 4
1 0 0 6
1 1 1 14
3 2 1 30
4 4 3 90
6 6 4 192
-
ns

-
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ter the first shell contains only oneA atom, the remaining
atoms being of typeB, two diagonal components of the con
ductivity tensor are identical.

C. Calculations for entire bands

In a first set of calculations the density of states and
conductivity ~and resistivity! were determined for energie
covering the entired band and some of the region above a
below, i.e., between20.1 and 0.7 Ry above the muffin-ti
zero for Ag50Pd50, between 0.0 and 0.7 Ry above th
muffin-tin zero for Cu50Pt50, and between 0.0 and 1.0 R
above the muffin-tin zero for Mo20Ni80. Calculations were
carried out for each of a given set of restricted cluster c
figurations and for various cluster sizes. The single res
were then averaged yielding configurationally averaged d
sity of states and resistivities.

For single shell clusters~13 atoms! of silver and palla-
dium atoms, various configurational averages including fr
10 to 8192~i.e., all, but of which only the 288 inequivalen
configurations were treated explicitly! configurations were
carried out in order to be able to assess the importance o
number of configurations necessary for a correct represe
tion of disorder. Figure 1 shows the density of states at
central site of a single shell spherical cluster calculated
the embedded and isolated cluster method. Figure 2 sh
the corresponding resistivities.

FIG. 1. Configurationally averaged density of states of spher
single-shell~13 atoms! Ag-Pd clusters~embedded in a CPA me
dium, upper plot; isolated, lower plot! as a function of energy.
Varying number of random configurations~restricted except for the
case of 8192 configurations!, cluster occupation in first shell: 6
3Ag, 63Pd. Vertical line: Fermi energy.
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Another objective of the calculations was to investiga
the behavior of the density of states and the resistivity as
number of shells is increased. Ten randomly chosen
stricted configurations were used for the configurational
erage and spherical clusters containing up to seven s
~135 atoms! were constructed. Figure 3 shows the density
states at the central site of spherical Ag-Pd clusters for v
ous cluster sizes calculated by the isolated and embed
cluster method. The clusters consist of equal numbers of
and Pd atoms. Figure 4 compares the resistivity of isola
and embedded clusters of various sizes. In all cases th
sults of CPA calculations are also shown for matters of co
parison. Figures 5 and 6 give analogous data as show
Fig. 4 for the alloys Cu50Pt50 and Mo20Ni80 ICM calculations
only.

D. Calculations at the Fermi energy

A second set of calculations was carried out at the Fe
energy only. Spherical clusters containing up to 11 sh
~201 atoms! were considered. The average was again p
formed over 10 restricted configurations~except for the zero-
shell cluster, which only contains the central atom wh
only the two possible configurations were used!. The three
alloys Ag50Pd50,Cu50Pt50, and Mo20Ni80 were considered
Figures 7 and 8 show the density of states and the resist
of clusters plotted as a function of cluster size~total number
of shells and atoms given!. The plots show the results for th
single configurations as well as for the average. The co
sponding CPA results are given by horizontal lines in Fig
whereas the CPA resistivity has been subtracted from

FIG. 2. Same as Fig. 1 for resistivity.
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cluster results in Fig. 8 to allow for displaying all results
one plot. In Fig. 7 the individual results for the density
states are marked differently according to the type of atom
the center of the cluster.

E. Calculations for varying alloy compositions

A third set of calculations was devoted to the comparis
of different alloys. For this the whole range of Ag-Pd an

FIG. 3. Configurationally averaged density of states of spher
Ag-Pd clusters of various sizes~embedded in a CPA medium, uppe
plot; isolated, lower plot! as a function of energy~averaged with 10
restricted configurations, occupation of clusters: 50% Ag, 50% P!.
Vertical line marks Fermi energy.

FIG. 4. Configurationally averaged resistivity of spheric
Ag-Pd clusters of various sizes~embedded in a CPA medium
marked ECM; isolated clusters, marked ICM! as a function of en-
ergy ~averaged with 10 restricted configurations, occupation
clusters: 50% Ag, 50% Pd!. Vertical line marks the Fermi energy
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Cu-Pt alloys was considered. Figures 9 and 10 show re
tivities at the Fermi energy averaged over 10 restricted r
dom configurations of isolated clusters for each alloy a
function of concentration. Spherical clusters of various si
up to 11 shells~201 atoms! were considered. CPA resistiv
ties are given for matters of comparison.

IV. DISCUSSION

A. Configurational averaging

In order to assess the sensitivity of the configurationa
averaged results to the number of configurations, various
culations were carried out with a single-shell cluster~13 at-
oms! based on various configuration numbers ranging fr
10 to 8192. One can see from Fig. 1 that~i! the density of
states shows a certain sensitivity to the number of confi
rations but only for energies close to the band edges,~ii ! for
most other energies quite precise results are already obta
for 10 configurations,~iii ! the same is true for the resistivit
shown in Fig. 2 and~iv! the full average is a bit differen
from the averages that merely contain restricted configu
tions due to the presence of the full range of configuratio
These findings are important because they allow us to c
fine the calculations to a fairly low number of configuratio
thus saving much computation time.

B. Shell size dependence of density of states

The densities of states for the CPA and for embed
clusters do not deviate from each other very much~see Fig. 3

FIG. 5. Same as Fig. 4 for Cu-Pt~only isolated clusters!. Occu-
pation of clusters: 50% Cu, 50% Pt.

FIG. 6. Same as Fig. 4 for Mo-Ni~only isolated clusters!. Oc-
cupation of clusters: 20% Mo, 80% Ni.
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upper plot!. This is easy to understand: for the zero-sh
‘‘cluster’’ this is exactly true, owing to the definition of the
CPA as single-site average. For larger shells the cluster
sults deviate from the CPA values for two reasons: First,
only 10 configurations are taken into account in the confi
rational average, the sampling of disorder is not perfect, t
leading to some deviations~see Fig. 1!. As will be shown
later, the density of states is quite sensitive to the envir
ment of a cluster. The restricted configurational avera
therefore might influence the density of states. Second, e
if all configurations were included in an average~which is
impractical for large cluster sizes! the DOS would deviate
from the CPA because, on the one hand, the embedded
ter formalism is a non-self-consistent method, and on
other hand, the cluster method includes multisite effects
lead to a more complex electronic structure.

The density of states of isolated clusters~Fig. 3 lower
plot! is quite different from that of embedded clusters. Th
is because especially for small clusters the neighborhoo
the central site is quite different in an isolated cluster
compared to an embedded cluster. Figure 3 nicely sh
how the bands are formed as the cluster size is increased
the zero-shell ‘‘cluster’’~only central atom! two pronounced
peaks are present. They are the sum of the density of s

FIG. 7. Density of states of isolated~ICM! and embedded
~ECM! Ag50Pd50,Cu50Pt50, and Mo20Ni80 clusters at the Fermi en
ergy. Component projected DOS for single configurations (A atom
in the center, up triangles;B atom in the center, down triangles
both DOS not concentration weighted! and the corresponding con
figurational averages of total DOS~crosses! are shown. CPA results
are given by horizontal lines.
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of a single silver and a single palladium atom. Both densi
of states are broadened in energy because one is dealing
energies belonging to the continuous spectrum of the sin
atom potentials. The two peaks are centered at the ene
where the two components have theird like scattering reso-
nances. As the cluster size is increased thed bands build up

FIG. 8. Resistivities of isolated~ICM! and embedded~ECM!
clusters at the Fermi energy for Ag50Pd50,Cu50Pt50, and Mo20Ni80.
Results for the ten restricted configurations and the correspon
configurational averages are shown. Resistivities are given rela
to the CPA resistivity (Ag50Pd50, 23.1mV cm; Cu50Pt50,
80.2mV cm; Mo20Ni80,120mV cm).

FIG. 9. Configurationally averaged resistivity of Ag-Pd allo
calculated at the Fermi energy with finite isolated clusters~average
over 10 restricted configurations, occupation with number of
and Pd atoms corresponding to macroscopic concentration.
results are given for matters of comparison.
s
ith
le
ies

and the cluster density of states moves closer and close
wards the corresponding rectangular shaped density of s
of the CPA. However, one can still see some oscillations
the DOS especially near the band edges even for seven s
~135 atoms!. This is typical for finite systems~see Refs. 20
and 26 for similar calculations!. Only in the limit of very
large~infinite! clusters is the density of states expected to
rounded off near the band edges and get close to the C
result. However, even in this case multisite effects wo
lead to some residual differences.

C. Shell size dependence of resistivity

Figures 4 to 6 show that the tendency observed for
density of states can also be found for the resistivity: Clus
resistivities get closer to the corresponding CPA resistivit
as the shell number is increased. This is true for both type
clusters. Three energy regimes can be distinguished:~i! In
the low energy regime the cluster resistivity, especially t
of isolated clusters, takes very high values exceeding
CPA resistivity by a factor of 50 and more. This applies
all three alloys investigated.~ii ! In an intermediate regime
which is almost the same as the regime of thed bands, the
cluster resistivities get quite close to the CPA as the clu
size is increased. Embedded clusters~results only shown for
Ag-Pd! lead to results slightly closer to the CPA than is
lated clusters in this regime.~iii ! Finally, for the energy re-
gime above thed band complex, i.e., above the Fermi e
ergy, the cluster resistivities deviate more from the CP
again. Especially Ag-Pd, where the CPA resistivity drops
very low values above the Fermi energy, shows this stro
discrepancy. Moreover, for high energies embedded and
lated cluster resistivities converge towards the same va
~see Fig. 4!.

The explanation for the different regimes is straightfo
ward: A cluster approach can only yield a correct resistiv
if the mean free path of the conduction electrons is in
range of the cluster size or smaller. If the mean free pat
much longer the scattering processes that are responsibl
the finite resistivity cannot be expected to be included in
cluster representation anymore. As the resistivity takes
highest values for energies in thed bands of a transition
metal ~corresponding to short mean free paths! the cluster
methods yield their best results in this energy regime. Us
the CPA one clearly does not have this problem because
CPA treats an infinite averaged medium and is therefore

ng
ve

A

FIG. 10. Same as Fig. 9 for Cu-Pt.
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pable of treating any mean free path. In contrast, approxi
tions with small clusters only work well for systems wi
strong scattering~high resistivity!. It is important to empha-
size that the fact that cluster resistivities getting closer to
corresponding CPA values with increasing cluster sizes d
not mean that there is an actual convergence. Converg
cannot be expected because even a very large~infinite! clus-
ter would give results deviating from the CPA because cl
ter calculations include multisite effects that cannot
treated within a single-site formalism such as the CPA.

That the interpretation given is indeed plausible can
seen by looking at the deviation of cluster and CPA resis
ities expressed by the ratiorcluster/rCPA as a function of both
energy and CPA conductivity as it is displayed in Fig. 1
The ratio as a function of energy shows high values for l
energies, i.e., below about 0.1 Ry, and energies above a
0.5 Ry as one can of course already see from Fig. 4. Look
at the ratio as a function of conductivity one finds an alm
linear relationship except for the lowest energies. Theref
the smaller the CPA conductivity is~indicating a short mean
free path!, the smaller the ratio between cluster and CP
resistivities. Extrapolating the conductivity to zero one se
that the ratio tends towards one. This means that the clu
resistivities get very close to the CPA if the mean free pat
negligible compared to the cluster diameter. However, as
ready pointed out, one cannot expect an exact agreem
because of the principal differences between single-site C
and cluster expansions that contain multisite effects.

FIG. 11. Ratio of cluster and CPA resistivities (scluster/sCPA)
for Ag50Pd50 shown as a function of energy and CPA conductivi
f (E) and f (s), respectively. Calculations based on isolated sev
shell clusters and 10 restricted configurations.
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D. Density of states at the Fermi energy

The densities of states of various isolated and embed
clusters at the Fermi energy are shown in Fig. 7. It is evid
that the values for individual configurations scatter grea
even if the atom in the center~at which the DOS is calcu-
lated! is the same. The spread of the results is smaller
isolated clusters than for embedded clusters. Looking at
results more closely, one finds the following.~i! For the two
alloys of ans-band metal~Ag, Cu! with a d-band metal~Pd,
Pt!, the DOS is low for thes-band atom at the center an
high for thed-band metal at the center.~ii ! The configura-
tions with thes-band metal at the center are less sensitive
the occupation in the surrounding cluster than those wit
d-band metal in the center.~iii ! For the configurations with a
d-band metal in the center very high DOS values~e.g., about
30 states/Ry for Ag-Pd! are found for configurations with
many otherd-band metal atoms in the cluster. These findin
are not surprising if we note that for a pured-band metal the
Fermi energy lies in a region where the density of state
high and has a rich structure as a function of ener
Changes in the environment of ad-band atom therefore
cause a strong change of the DOS, whereas the DOS o
s-band metal—in which the Fermi energy lies in the flats
band with a low DOS—is relatively insensitive to the com
position of its neighborhood. Mo20Ni80 with two d-band con-
stituents consequently shows about the same behavior o
DOS no matter which of the atoms is in the center.

The averages of 10 restricted configurations~only two for
zero-shell ‘‘clusters’’! can be compared with the CPA den
sity of states. One finds that~i! for a zero-shell embedde
‘‘cluster’’ the two quantities are the same by definition of th
CPA; ~ii ! the averaged embedded cluster DOS is quite cl
to the CPA DOS for all cluster sizes~see discussion in Sec
IV B !; and ~iii ! the averaged isolated cluster densities
states deviate more from the CPA DOS especially for sm
clusters. The isolated zero-shell ‘‘cluster’’ DOS is far aw
from the CPA result in Mo20Ni80, in which the Fermi energy
is close to the band edge where such deviations tend to
more pronounced~see Sec. III D and Fig. 3! and quite close
to the CPA DOS for Ag50Pd50, in which the Fermi energy is
far above the band edge. For large isolated clusters all d
sities of states move towards the CPA as expected.

E. Resistivity at the Fermi energy

Turning to the resistivity, which is shown in Fig. 8 for te
restricted configurations and as a configurational average
both isolated and embedded clusters of varying sizes,
notes the following.~i! In contrast to the density of states th
resistivity is strongly cluster size dependent.~ii ! The scatter
between individual configurations is much smaller than
the DOS.~iii ! An increase of cluster size leads to averag
resistivites that slowly approach the CPA resistivity~which
is represented by the value 0 in Fig. 8!. ~iv! The resistivities
lie closest to the CPA for Mo20Ni80, followed by Cu50Pt50
and Ag50Pd50. ~v! Isolated and embedded clusters show
similar tendency. For Ag50Pd50 and Cu50Pt50 isolated clusters
lead to lower resistivities while for Mo20Ni80 the opposite is
true. ~vi! The changes in resistivity when one increases
cluster size are more pronounced for small clusters and w
the shell added has many atoms.
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The behavior of the density of states differs from that
the resistivity because the DOS is a local quantity describ
the electronic structure at one particular location in the cl
ter ~the center!, whereas for the resistivity all sites of a clu
ter are treated in the same way. Moreover, from what w
said in Sec. IV C one knows that the resistivity is strong
shell-size dependent especially when the mean free path
the range or larger than the shell diameter because then
scattering process cannot be represented properly and
increase in shell size adds significant contributions to
resistivity. Only when the mean free path is much shor
than the diameter of the cluster would one expect that
resistivity saturated as a function of shell size. Such an ef
does not clearly exist for the density of states, which is
influenced very much by distant atoms. For Cu50Pt50 a mean
free path of 1.7 nm was determined from the Boltzma
equation as described in Ref. 27, which corresponds to a
4.5 lattice spacings or slightly less than the diameter o
five-shell cluster. For Ag50Pd50 the mean free path is abou
three times as long, for Mo20Ni80 it is about half the mean
free path for Cu50Pt50. This explains well the magnitude o
deviation between cluster resistivities and CPA as see
Fig. 8, which increases from Mo20Ni80 to Cu50Pt50 and
Ag50Pd50. From Fig. 8 it is also obvious that a convergen
of the resistivity~to some ‘‘infinite cluster’’ value, not to the
CPA resistivity! has not been achieved for 11-shell cluste
~201 atoms! and that still larger clusters are necessary
obtain convergence.

F. Resistivity for different alloys

From what was discussed in the previous sections the
sults for the cluster resistivities for alloys of different com
positions shown in Figs. 9 and 10 are not surprising. Wh
the CPA calculation for the alloys Ag-Pd and Cu-Pt reve
the typical distorted Nordheim-like curve with a maximu
near 60 and 50 at. % Pd or Pt, respectively, and the dro
zero resistivity for the pure components, the cluster resis
ities do not show this behavior. The cluster results are clo
to the CPA resistivity for binary alloys in about the middle
the composition range, while the deviations are largest
dilute alloys. Extrapolation of cluster results to pure comp
nents leads to finite resistivities while the~infinite! pure
metal should have zero resistivity. This comparison can
visualized best by looking at the ratio between cluster re
tivity and the corresponding CPA resistivity and plotting it
a function of composition~Fig. 12!.

The reason for the better agreement of cluster resistiv
with the corresponding CPA results for concentrated all
clearly again lies in the shorter mean free path in these al
as was already discussed before. To make this clear the m
free path is shown in Fig. 12 and compared to the devia
ratio. The former was determined by using the semiclass
Boltzmann equation.27 The mean free path given is an ave
age over all electrons in the innermost sheet of the Fe
surface. These electrons carry at least 80% of the ele
current. The remaining sheets of the Fermi surface con
slow electrons with a much shorter mean free path. Figure
shows that mean free path and deviation ratiorcluster/rCPA
are nearly proportional. Therefore, the larger the mean
path, the more one needs a large cluster in order to g
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realistic value for the cluster resistivity. For Mo20Ni80, e.g.,
the diameter of the 11-shell cluster used is equal to f
times the mean free path~0.87 nm!. This situation allows for
a quite reasonable description of the resistivity by a clus
approximation, although the CPA resistivity is still lower b
a factor of 1.7. For alloys such as Ag90Pd10, however, the
mean free path is three times the diameter of the larg
cluster used and the resistivity based on such clusters is c
pletely wrong.

G. Influence of cluster type

So far only spherical clusters have been considered.
important to raise the question of how important the parti
lar cluster shape is. To give an answer two calculations w
carried out with spherical and rectangular clusters of a si
lar size, namely a spherical cluster of six shells~87 atoms!
and a rectangular cluster of 90 atoms. The alloy Ag50Pd50
was chosen and 10 restricted configurations were used
the average in both cases. The results shown in Fig. 13 s
that there is little difference between the two cluster type

FIG. 12. Deviation of cluster from CPA resistivities express
as the ratiorcluster/rCPA as a function composition (E5EF). Iso-
lated 11-shell clusters and an average with 10 restricted config
tions were used. Moreover, the mean free path of the electron
the innermost sheet of the Fermi surface is given for each alloy

FIG. 13. Resistivity of isolated spherical clusters with six she
~87 atoms! compared to the resistivity of isolated rectangular clu
ters with 90 atoms. Cluster composition Ag50Pd50. 10 restricted
configurations used for averaging.
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H. Comparison to experimental resistivities

Because comparing calculated results with measured
is not one of the main purposes of this paper, only a sh
look is given on such data. For the three allo
Ag50Pd50,Cu50Pt50, and Mo20Ni80 the experimental resistiv
ity extrapolated toT50 is 29~Ref. 28!, 82 ~Ref. 3!, and 117
~Ref. 29! ~all in mV cm), respectively. Our CPA calcula
tions yield 23.1, 80.2, and 120, respectively. Reference
gives 116mV cm for the latter case. The observed excelle
agreement between experimental and calculated resistiv
however, is partially lost when one includes angular m
menta up to l 53 in the calculations. The resistivity o
Mo20Ni80, e.g., drops to 71mV cm, and a similar drop is
observed for other alloys.6 Calculated CPA resistivities ar
lower than corresponding experimental values for many
loy systems—provided that sufficiently high angular m
menta are taken account of—indicating that there are sca
ing mechanisms in real alloys that cannot be included in
CPA. The cluster approximations treated in this paper co
perhaps yield better results, although nothing definite can
said until a convergence with respect to the cluster size
been achieved.

V. CONCLUSIONS AND OUTLOOK

By calculating the density of states and the electrical c
ductivity ~or resistivity! of finite clusters that were eithe
isolated or embedded in a surrounding CPA medium,
possibility for approximately representing an infinite latti
by finite clusters could be evaluated. In the work presen
here it was attempted to approximate a disordered sys
described by the CPA by finite clusters and an explicit c
figurational average over various cluster configurations.
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It was found that especially for the conductivity a sm
number of configurations is sufficient for the average b
cause the conductivity is quite insensitive to the arrangem
of the atoms in a cluster. Resistivities of clusters were cal
lated and compared with corresponding results given by
CPA for various situations: energy dependent resistivit
were calculated, quantities only at the Fermi level we
given a closer look and, finally, various alloys were trea
for matters of comparison. The general result obtained w
that ~i! the larger the clusters, the closer the results lie to
CPA, and~ii ! cluster and CPA resistivities are quite clo
together whenever the resistivity of the system is high,
the mean free path of conduction electrons is small compa
to the cluster diameter. In the alloys considered this is t
for energies that lie in thed-band complex. Therefore, th
cluster methods yield good results for the resistivity only
the Fermi level lies in thed band. Not very much difference
was seen between the conductivity of isolated and embed
clusters so that most calculations were performed within
simpler isolated cluster scheme.

It seems realistic that for highly resistive alloys sho
range order effects can be modeled by including statist
weights in the configurational average. There is some h
that the resistivity change associated with a rearrangeme
atoms after short-range ordering can be calculated this w
In a forthcoming paper30 the cluster methods presented
this paper will therefore be applied to some highly resist
alloys in various states of order.
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2K. Schröder, CRC Handbook of Electrical Resistivities~CRC
Press, Boca Raton, FL,1983!.

3C.H. Johansson and J.O. Linde, Ann. Phys.~Leipzig! 82, 449
~1927!.

4J.C. Swihart, W.H. Butler, G.M. Stocks, D.M. Nicholson, an
R.C. Ward, Phys. Rev. Lett.57, 1181~1986!.

5R.H. Brown, P.B. Allen, D.M. Nicholson, and W.H. Butler, Phy
Rev. Lett.62, 661 ~1989!.

6J. Banhart, Philos. Mag. B77, 106 ~1998!.
7J. Banhart and H. Ebert, Europhys. Lett.32, 517 ~1995!.
8J. Banhart, Phys. Rev. Lett.82, 2139~1999!.
9W. Pfeiler, Acta Metall.36, 2417~1988!.

10J. Banhart, P. Weinberger, and J. Voitla¨nder, Phys. Rev. B40,
12 079~1989!.

11D.M.C. Nicholson and R.H. Brown, Phys. Rev. Lett.21, 3311
~1993!.

12H. Ehrenreich and L. Schwartz, inSolid State Physics, edited by
H. Ehrenreich, F. Seitz, and D. Turnbull~Academic Press, New
York, 1976!, Vol. 31, p. 149.

13J.S. Faulkner, inProgress in Material Science, edited by J.W.
Christian, P. Haasen, and T.B. Massalski~Pergamon Press, New
York, 1982!, Vol. 27, p. 1.
14P. Weinberger,Electron Scattering Theory for Ordered and Dis
ordered Matter~Clarendon Press, Oxford, 1990!.

15A. Gonis,Green Functions for Ordered and Disordered Syste
~Elsevier, North-Holland, 1992!.

16B.L. Györffy and M.J. Stott, inBand Structure Spectroscopy o
Metals and Alloys, edited by D.J. Fabian and L.M. Watso
~Academic Press, London, 1973!, p. 385.

17C. Cohen-Tannoudji, B. Diu, and F. Lalo¨e, Quantum Mechanics
~Herrman, Paris, 1977!.

18J.S. Faulkner, J. Phys. C10, 4661~1977!.
19J.S. Faulkner and G.M. Stocks, Phys. Rev. B21, 3222~1980!.
20H. Winter and G.M. Stocks, inThe Electronic Structure of Com

plex Systems, Vol. 113 of NATO Advanced Studies Institute
Series B: Physics, edited by P. Phasiseau and W.M. Temme
mann~Plenum Press, New York, 1983!, p. 463.

21P. Soven, Phys. Rev. B2, 4715~1970!.
22B.L. Györffy, Phys. Rev. B5, 2382~1972!.
23W.H. Butler, Phys. Rev. B31, 3260~1985!.
24CPA computer program by H. Akai used.
25N.F. Mott and H. Jones,The Theory of the Properties of Meta

and Alloys~Dover, New York, 1958!.
26H. Winter and G.M. Stocks, Phys. Rev. B27, 882 ~1983!.
27J. Banhart, P. Weinberger, and J. Voitla¨nder, J. Phys.: Condens



PRB 61 16 513ELECTRICAL CONDUCTIVITY OF FINITE METALLIC . . .
Matter 1, 7013~1989!.
28B.R. Coles and J.C. Taylor, Proc. R. Soc. London267, 139

~1962!.
29T.S. Lei, K. Vasudevan, and E.E. Standbury, inHigh-
Temperature Ordered Intermetalic Alloys, edited by C. C. Kuch
et al., MRS Symposia Proceedings No. 39~Materials Research
Society, Pittsburgh, 1985!, p. 163.

30L. Dulca, J. Banhart, and G. Czycholl~unpublished!.


