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Electrical conductivity of long-range–ordered alloys
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Abstract. – The electrical resistivity of disordered, partially ordered and long-range–ordered
gold-copper alloys was calculated from first principles by applying the coherent-potential ap-
proximation (CPA) and the Kubo-Greenwood equation to lattices with 2 or 4 atoms per unit
cell and varying the occupation probabilities within each cell. In a first step the composition-
dependent resistivity for disordered alloys and alloys with the highest possible degree of order
was calculated for the entire composition range. After this the experimental resistivity as a
function of composition was modelled by calculating the resistivity based on reasonable values
for the concentration-dependent order parameter and using lattice structures determined from
the phase diagram for each concentration. The experimental resistivity for annealed alloys with
its pronounced minima for the two stoichiometric compositions could be perfectly reproduced.

Introduction. – The electrical resistivity of alloys is extremely sensitive to atomic re-
arrangements or structural changes of any kind. A striking example can be found in many
textbooks: the resistivity of gold-copper alloys varies smoothly with concentration whenever
Au and Cu atoms are distributed randomly on an fcc lattice, whereas some pronounced minima
are found when the atom species are allowed to form an ordered arrangement. The correspond-
ing data from ref. [2] are displayed in fig. 1 together with some results to be discussed later.
The behaviour of the resistivity can easily be understood in a qualitative way: electrical resis-
tivity is created by deviations from translational symmetry which are very pronounced in the
disordered state. Ordering brings an alloy quite close to a translationally invariant configura-
tion in which there is hardly any impurity scattering and resistivity is therefore small. Despite
the seemingly simple physics of the phenomenon, a quantitative description is still lacking.
Beside some simple models (see, e.g., [4]) no successful attempts to calculate the effect of or-
dering on the electrical resistivity of alloys are known of. In this letter we provide an adequate
formalism for calculating these effects in a parameter-free way —“from first principles”— and
apply it to the alloy gold-copper. Au-Cu is attractive because it is one of the most intensively
studied alloys and because it exhibits at least two different low-temperature ordered phases,
namely the cubic AuCu3 (L12) structure and the tetragonal AuCuI (L10) structure (fig. 2).

Method. – The starting point for the calculations is a theoretical scheme developed for
disordered alloys, namely an approach which starts from a local density functional description
c© EDP Sciences
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Fig. 1 – Top: part of the phase diagram of Au-Cu [1]. Bottom: electrical resistivity for disordered and
ordered Au-Cu alloys. Full symbols: experimental values at T = 300 K [2] extrapolated to T = 0K by
subtracting the averaged resistivity of the pure components xρAu + (1 − x)ρCu (triangles: quenched
from above Tc = disordered, squares: annealed = ordered). Open symbols: experimental values
measured at T = 21 K [3]. Broken line: calculated resistivity for disordered fcc alloys and for L12 or
L10 superstructures with reduced order (based on curves 2 in fig. 3). Full line: calculated composite
resistivity using order parameters given by curves 3 in fig. 3. The vertical lines mark the compositions
which separate different regimes (see table II). Note that calculated resistivities are enlarged by 35%
in comparison to experimental values.

of the many-particle problem, treats disorder in the framework of the coherent potential ap-
proximation (CPA) in conjunction with the Korringa-Kohn-Rostoker (KKR) method and uses
the rigorous Kubo-Greenwood formula of linear-response theory for the transport calculation.
This has led to excellent results for the conductivity of paramagnetic [5–7] and ferromagnetic
alloys [8] and even for optical properties [9].

Although the CPA deals with totally disordered systems, it can be used to describe homo-
geneous long-range order. Consider the ordered AuCu3 structure (L12) shown in fig. 2. It can
be viewed as a simple cubic lattice with a basis of 4 atoms. Denote the probability for finding
a gold atom on the i-th site of the basis xi (i = 1, . . . , 4). Complete disorder corresponds to
xi = 0.25 for all i. One could treat this case by applying the KKR-CPA to a complex lattice
with 4 atoms per unit cell and searching for 4 effective scatterers which represent on the aver-
age all possible occupations of the 4-atom basis with appropriate statistical weights [10]. Of
course all four scatterers are identical in the case of disorder and the problem is equivalent to
the much more simple task of searching for one effective scatterer on an fcc lattice. By choos-
ing non-equal xi, however, one can move away from disorder. One extreme case corresponds
to total order. Here one sublattice is occupied exclusively by Au atoms, while the remaining
positions are Cu sites, i.e. x1 = 1 and x2 = x3 = x4 = 0 using the numbering defined in fig. 2.
As there is only one possible configuration in this case the averaging procedure is trivial and
the effective scatterers are just the pure components Au and Cu. Partially ordered states can
be obtained by choosing occupation values between these limits. In such cases the KKR-CPA
is a non-trivial problem and one has to solve the full set of KKR-CPA equations to obtain 4
non-equal effective scatterers.

The ordered phase AuCuI (L10) can be treated in an analogous way. The structure consists
of alternating planes in an fcc lattice exclusively occupied either by Au or by Cu. We use a
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Fig. 2 – Two of the ordered structures occurring in the Au-Cu system. Dashed lines connect the
atoms of an individual unit cell, the vectors are the basis vectors of the respective structure.

Fig. 3 – Bragg-Williams order parameters S used in calculations. Curves 1: highest possible order
parameter; curves 2: order reduced by choosing a non-zero auxiliary parameter ε(x) which is ε = 0.03
(0.09) for stoichiometric L10 (L12) and drops to 0 linearly for x approaching 0 or 1; curves 3: same
as 2 except that ε(x) increases quadratically according to eq. (3). Horizontal broken lines: order
parameter for L12 and L10 samples derived from experimental data.

tetragonal unit cell with a 2-atomic basis and tetragonal lattice constants a = d/
√

2 and c = d,
where d is the fcc lattice constant (see fig. 2, r.h.s.). A tetragonal distortion can be introduced
to account for the experimentally known fact that c/d = 0.93 in real AuCuI alloys [11]. In
both cases disorder corresponds to x1 = x2 = 0.5, complete order to x1 = 1, x2 = 0 and
partial order to values between these.

In off-stoichiometric alloys no perfect order can be achieved because the excess Au (Cu)
has to be accommodated on Cu(Au) sites. The site occupations which correspond to the
highest possible degree of order are given in table I. For this case the auxiliary parameter
ε which will be explained later has to be set to zero. From the lattice occupations xi the
familiar Bragg-Williams order parameter S can be derived which quantifies the fraction of Au
(Cu) atoms correctly placed on a Cu(Au) sublattice [12]. The full line in fig. 3 shows S as a
function of composition for the two superstructures considered.

The calculations were carried out in the following way: The KKR-CPA equations were
first solved self-consistently for random fcc alloys using experimental lattice constants corre-
sponding to the disordered state [11]. This way potentials for 40 alloys covering the entire
composition range were obtained. These potentials and lattice constants were used in all the
following calculations of both ordered and partially ordered states, i.e. the slight change in
lattice constant upon ordering was ignored. Moreover, it was assumed that the potential is
not very sensitive to the precise nature of the neighbourhood of an atom, i.e. that atomic
potentials of the disordered state can be used for partially ordered alloys without introducing
a significant error. While the validity of the former assumption could be verified explicitly
by varying the lattice constant, the latter one is supported indirectly by calculations on other
alloy systems beside Au-Cu which also yielded good results [13].

In a second step KKR-CPA calculations based on the two structures L12 and L10 and
the given order parameters were carried out. The output of such calculations is the configu-
rationally averaged CPA Green function 〈G〉conf. which is used to calculate the isotropic dc
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Table I – Occupations of sublattice sites for the two ordered structures investigated. S is the Bragg-
Williams order parameter. “Au-sites” are all sites on sublattice 1, “Cu-sites” are the sites on sublattice
2 (AuCuI) or 2, 3, 4 (AuCu3). ε > 0 is an auxiliary parameter allowing to introduce additional
disorder, with ε = 0 corresponding to the highest possible degree of order.

Structure Au concentration x Au sites Cu sites S

AuCu3 (L12) 0–0.25 4x − ε
ε

3

3x − ε

4x(1 − x)

0.25–1 1 − ε
1

3
(4x − 1 + ε)

1 − x − ε

4x(1 − x)

AuCuI (L10) 0–0.5 2x − ε ε
x − ε

2x(1 − x)

0.5–1 1 − ε 2x − 1 + ε
1 − x − ε

2x(1 − x)

conductivity by means of the Kubo-Greenwood equation [7, 14]:

σ =
1
3

3∑

µ=1

h̄

V π
Tr

〈
Im G(εF)jµ Im G(εF)jµ

〉
conf.

. (1)

Here jµ are the electronic current operators in the direction µ and V the atomic volume.
It is shown in ref. [14] how this expression can be evaluated in the framework of the KKR-
CPA by expressing the average over the product of Green functions in terms of 〈G〉conf. and
approximately evaluating the vertex corrections. All the Brillouin zones were sampled with
about 70000 points. A density functional provided by Moruzzi et al. was used [15].

Results. – In a first set of calculations the resistivity was calculated for the entire compo-
sition range for each of the structures defined, namely disordered fcc and L12 or L10 with the
highest possible degree of order (fig. 4). The resistivity of the disordered fcc phase exhibits
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Fig. 4 – Calculated electrical resistivity for Au-Cu alloys. Diamonds: disordered fcc alloys, triangles:
alloys with L12 (AuCu3 structure), inverted triangles: hypothetical alloys with L12 (Au3Cu structure),
squares: alloys with L10 structure based on c/d = 0.93 (open) and 1 (closed). For all ordered
superstructures the highest possible order parameter given by curve 1 in fig. 3 was used.
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the familiar inverted parabola shape (“Nordheim’s rule”). The calculated resistivity is about
35% lower than the experimental data extrapolated to T = 0 (given in fig. 1). Such deviations
are often observed in calculations of this kind [7,8] and are a consequence of representing the
real alloy with a complex atomic configuration containing lattice distortions, imperfections,
impurities etc. by a muffin-tin alloy with only two different potential types on an otherwise
perfect crystal lattice.

The resistivity curves for the two ordered superstructures show two inverted parabolae
separated by zero resistivity for the perfectly ordered stoichiometric compositions. For all
other compositions the resistivity is non-zero because the order parameter is smaller than 1.
One can easily understand these curves if one thinks of the alloys as pseudobinary systems,
i.e. AuCu3 can be considered a binary Cu/AuCu3 for x ≤ 0.25 and AuCu3/Au for x ≥ 0.25,
and AuCuI as Cu/AuCuI for x ≤ 0.5 or AuCuI/Au for x ≥ 0.5. Assuming c/d = 0.93 instead
of c = d for the L10 structure does hardly change the resistivity. Therefore the influence of the
tetragonal distortion due to the difference in atomic radii of Au and Cu is minute. Figure 4
also shows that the resistivity for the Au3Cu structure (which is the same as AuCu3 with the
atom species exchanged) behaves very similar to that of AuCu3. As there is no experimental
evidence for this phase this is of more academic interest.

A second calculation was aimed at reproducing the resistivity of the actual alloy system
with some of its phase complexity, i.e. the well-known curve known from the literature [2]
given in fig. 1 (full squares). For the disordered phase the values already shown in fig. 4
can be taken. We plot experimental and theoretical resistivities on two scales in fig. 1 which
differ by 35% to eliminate the difference between the two which was already mentioned and
to make comparison easier. For ordered alloys a complete description is only possible if one
makes additional assumptions and uses some adjustable parameters. The theory used in
this paper exclusively treats resistivity caused by scattering at static impurities, whereas the
experimental data [2] were obtained at room temperature and therefore contain significant
contributions due to thermal scattering, leading to a quite large residual resistivity already
for the pure elements. In order to eliminate some of the thermal effects, the simplest approach
is to consider the line between the pure metal resistivities as base line and to subtract it from
the experimental values. However, the corrected experimental values displayed in fig. 1 still
show some thermal scattering for the ordered state as one can see from comparison with the
few low-temperature measurements available. This is due to the known order dependence of
the temperature effect [16]. Furthermore, even at the lowest temperatures the resistivities
for the ordered compositions do not vanish as even extremely long annealing times do not
yield perfect ordering because of the limited atomic mobility in the solid [17]. This residual
disorder depends very much on the specific sample and cannot be predicted. We therefore
take experimental values ρ(S)/ρ0 for the two ordered superstructures from ref. [2] and convert
them into residual order parameters Sres by using Rossiter’s formula [12]:

ρ(S)
ρ0

=
1 − S2

1 − AS2
, (2)

where ρ0 is the resistivity for random alloys (S = 0). Further calculations and experiments
suggest that the parameter A is between 0.3 [13], 0.35±0.05 [18] and 0.5 [17]. Using our value
A = 0.3 yields Sres = 0.88 for the L12, Sres = 0.94 for the L10 samples used in ref. [2].

Disorder can be introduced into the model by deliberately misplacing atoms by adjusting
the auxiliary parameter ε. The expressions given in table I yield the required values for S
if one assumes ε = 0.09 (0.03) for stoichiometric L12 (L10). Further assuming that ε(x)
drops linearly to zero for x approaching the pure components, one obtains the composition-
dependent order parameter shown in fig. 3 (curve 2). This choice for ε(x) creates a nearly
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Table II – Partition of composition range of Au-Cu into segments corresponding to different phases
as derived from phase diagram (fig. 1). Calculational parameters used in modelling the experimental
resistivity curve are given.

Au concentration x Structure Calculational parameters

0 ≤ 0.19 random fcc none
0.19 ≤ 0.35 L12 ε0 = 0.09, A = 64(16) for x ≤(≥) 0.25
0.35 ≤ 0.38 L12+L10 weighted average L12+L10

0.38 ≤ 0.62 L10 ε0 = 0.03, A = 3.5 for all x
0.62 ≤ 0.65 L10+fcc weighted average L10+fcc
0.65 ≤ 1 random fcc none

composition-independent reduction of S compared to the state of maximum order (curve 1).
The corresponding resistivities are given by broken lines in fig. 1 and are labelled “L12” and
“L10”. Obviously, the minimum values of the experimental resistivity are well reproduced
except, of course, for the 35% offset of the ρ-axes. The two curves are quite similar to
the ones shown in fig. 4, the only difference being a small asymmetry and slightly higher
maximum values due to the increased disorder. It is obvious that the experimental resistivity
ρ(x) for off-stoichiometric compositions is not yet well described. Coming from the minima,
the measured ρ(x) shows a nearly linear increase, whereas the calculations exhibit an inverted
parabola. The reason for this could be twofold: firstly, the assumption of homogeneous
disorder for non-stoichiometric compositions could be invalid. Excess gold or copper could
segregate into clusters instead of uniformly populating the sublattices. Second, the assumption
of a composition-independent disorder contribution to S could be unrealistic. The second
reason can be assessed here: taking into account that the driving force for ordering is strongest
for the ideal stoichiometric composition and falls off away from these compositions, it is
reasonable to assume a concentration-dependent ε(x) which has its minimum value ε0 at
x = 0.25 or x = 0.5 and increases for off-stoichiometric compositions. Good results were
obtained by using the form

ε(x) = ε0 + A(x − xs)2, for xs = 0.25 or xs = 0.5. (3)

The choice of constants given in table II then yields curve 3 in fig. 3. Figure 1 shows the
main result of this paper: a calculated composite resistivity curve obtained by dividing the
entire concentration range into various segments, each one corresponding to a specific crystal
structure determined from the experimental phase diagram. For each segment the resistivity
was calculated using the respective structure and the parameters given in table II, after which
the results were put together to the full line in fig. 1. The experimental values are very well
represented by the resulting curve. The linear behaviour of ρ(x) on both sides of each stoi-
chiometric composition can be reproduced perfectly. Only the region between 62 and 75 at.%
Au is problematic, where in reality the alloy shows a more complicated phase composition
than the assumed simple mix “L10+fcc” or pure fcc. Moreover, the experimental finding that
annealed samples have a higher resistivity than disordered alloys in this regime indicates that
short-range order or other phenomena which are beyond the reach of the methods described
in this paper could be important.

One should emphasise that in contrast to the calculations presented in the first part of this
paper, this calculation is not parameter-free but uses a small number of phenomenological
assumptions concerning the degree of residual order in the alloys which, however, are not
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arbitrary but were derived directly from the experimental resistivity. Altogether, the excellent
agreement of calculations and experiment is a great success of the alloy theory employed.
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