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Tensorial neutron tomography of three-
dimensional magnetic vector fields in bulk
materials
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Knowing the distribution of a magnetic field in bulk materials is important for understanding

basic phenomena and developing functional magnetic materials. Microscopic imaging tech-

niques employing X-rays, light, electrons, or scanning probe methods have been used to

quantify magnetic fields within planar thin magnetic films in 2D or magnetic vector fields

within comparable thin volumes in 3D. Some years ago, neutron imaging has been demon-

strated to be a unique tool to detect magnetic fields and magnetic domain structures within

bulk materials. Here, we show how arbitrary magnetic vector fields within bulk materials can

be visualized and quantified in 3D using a set of nine spin-polarized neutron imaging mea-

surements and a novel tensorial multiplicative algebraic reconstruction technique (TMART).

We first verify the method by measuring the known magnetic field of an electric coil and then

investigate the unknown trapped magnetic flux within the type-I superconductor lead.
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Surveying magnetic fields inside solid matter is a difficult
challenge but new methods are developing that allow one to
visualize and quantify magnetic structures: Techniques for

surface measurements such as magneto-optical Kerr microscopy1,
electron magnetic exchange force microscopy2,3 and spin-
polarized scanning tunneling microscopy3 on the one hand, or
transmission techniques such as soft X-ray holography/dichroism
microscopy4–6 and Lorentz transmission electron microscopy/
holography7–9 on the other have been used to probe the internal
magnetic structure of thin samples (up to some 100 nm thickness)
even in three dimensions10.

However, there is still a fundamental gap: The complete 3D
structure of a magnetic vector field in (thick) bulk samples is
inaccessible by any of these techniques. A first approach in this
direction provided maps of the magnetic domains within a thin
film rolled into a cylinder11. More recently, an approach based on
ptychographic X-ray nano-tomography has been demonstrated to
provide magnetic contrast12,13. This technique has been further
extended to investigate the magnetic vector field in 3D in a
GdCo2 sample14. The contrast used is based on the X-ray mag-
netic circular dichroism (XMCD) at X-ray absorption edges of the
corresponding material and restricts the usable X-ray energies to
that of the X-ray absorption edges of the corresponding materials,
which affects the maximum achievable penetration depths.

The fundamental problem of imaging and measuring magnetic
vector fields inside solid matter is the necessity to use a probe that
is sensitive to magnetic fields on the one hand, but penetrative
enough to reach the region of interest inside a material on the
other. Light and X-rays interact mainly with atomic electron
shells and only weakly with a magnetic field directly. Due to their
spin, electrons are very sensitive to magnetic fields, but they have
only limited penetration depths. In contrast, neutrons satisfy both
conditions as their spin is affected by magnetic fields due to their
intrinsic magnetic moment while they penetrate deeply into many
materials, especially metals, due to their zero electric charge and
weak interaction with the atomic shell. It has been shown that
neutron phase grating interferometry15,16 can be used to inves-
tigate magnetic domains17 and other magnetic structures such as
vortex-lattice domains18 two-dimensionally and three-
dimensionally19 in bulk samples, but only the domain walls
could be visualized and no information on the magnetic field
direction was obtained. On the other hand, spin-polarized neu-
tron imaging provides access to the magnetic field direction due
to the precession of neutrons when passing a magnetic field and
the measurable change of the spin-polarization direction of a
beam. Several approaches have been suggested to make use of the
potential of spin-polarized neutron imaging for 3D magnetic
vector field measurements in bulk materials20–23, but quantitative
tomography has only been demonstrated for simple, one-
dimensional magnetic fields, where the field vectors vary only
in strength but not in direction24,25.

Here we show a way to overcome the current limits by
designing a neutron imaging setup equipped with four spin-
flippers and two spin-polarizers and obtaining a set of nine
individual tomography measurements instead of just one. The
data obtained serve as an input for a specially developed recon-
struction algorithm used to extract the full three-dimensional
magnetic vector field distribution.

Results
Basic principles. A sketch of the imaging setup is shown in Fig. 1.
After monochromatization the neutrons pass the first spin
polarizer P1. In a magnetic field a neutron spin can take only one
of two possible eigenstates, namely spin up |↑〉 or spin down |↓〉.
The spin-polarizer shown in Fig. 1 absorbs neutrons with spin

down |↓〉 so that only spin up |↑〉 neutrons can pass. Ignoring for
a moment the flippers (F1 to F4) the now spin-polarized neutron
beam, intensity profile I0(x, y), passes through the sample, during
which in each ray of the beam the spin orientation may change
depending on the magnetic vector field distribution along the ray.
Finally, another spin polarizer P2 called the spin analyzer and a
2D detector are used to measure the transmitted intensity I(x, y)
given by:

I x; yð Þ ¼ I0 x; yð Þ � exp �
Z

path
μatt sð Þds

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≤ 1ðattenuation by sampleÞ

� 1
2
1þ cos ϑ x; yð Þð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

≤ 1ðspin rotationÞ

;

ð1Þ

where μatt(s) is the linear attenuation coefficient in the sample
along path s and defines the first term. The second term occurs
because neutrons pass the polarization analyzer P2 with an angle
ϑ(x, y) between the beam polarization vector ~P and the ~y axis
(see coordinate system in Fig. 1) at location (x, y). Therefore,
from the measurement of transmission I(x,y) alone, only the polar
angle between ~P and~y is obtained. The azimuthal angle remains
unknown and requires additional measurements using two pairs
of spin flippers F1-F4.

The first pair of spin-flippers F1/F2 is used to rotate the initial
spin polarization vector of the neutron beam (parallel to ~y after
polarization by P1) into one of three possible axes~x,~y, and~z by
an angle of π

2. After passing the sample, the spin-polarization of
the neutrons can be in any direction. A second pair of spin-
flippers F3/F4 (see Fig. 1a) is used in combination with the spin
analyzer to probe the spin polarization changes of the neutron
beam in any of the three directions ~x, ~y, and ~z separately by
applying π

2 spin flips again. Altogether 3 × 3 different measure-
ments are performed for different combinations of neutron beam
spin polarization before and after the sample. In this way, all
components of the magnetic field in the sample can be probed.
Further details are explained in Methods.

Beside the difficulty to precisely set-up and adjust the various
neutron-optical elements, a further major challenge is to find a
mathematical reconstruction procedure that allows one to extract
information from the nine 3D data sets and eventually obtain
three sets of 3D data representing each magnetic vector field
component. Here, we develop a technique that resembles the
well-known, although due its complexity barely used, multi-
plicative algebraic reconstruction technique (MART) algorithm
that was only made for scalar values, but can be extended to use
tensors, then called tensorial MART (TMART), see Methods.

Magnetic vector field of an electric coil. We apply a three-stage
procedure to verify and apply the new method: First, the new
TMART technique is tested by letting it reconstruct a simulated
tomography experiment on a calculated magnetic field of an
electric coil. Second, a real coil producing a known field is probed
by neutrons and TMART applied. Comparison with the all-
simulated experiment validates the experimental approach.
Finally, an unknown complex magnetic field inside a real sample
is measured. Accompanying simulations based on simplified
current patterns help to understand the results.

First, we prove the reliability of the TMART algorithm by
reconstructing the well-known magnetic field of an electric coil
that is calculated using the Biot-Savart law (Fig. 2a–c). Figure 1b
and Supplementary Movie 1 show some selected magnetic field
lines taken from the calculated magnetic vector field to
demonstrate the complexity of the field. Based on the calculated
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magnetic vector field we simulated an ideal neutron tensor
tomographic measurement and used the virtually created nine 3D
data sets as an input for our algorithm. Figure 2d–f show the
results.

In the second step, a real tensor tomographic measurement of
an electrical coil of nearly the same dimensions and parameters as
the simulated one is performed and reconstructed, leading to
Fig. 2g–i. Despite some limits in spatial resolution the magnetic
vector field is reconstructed very well. Quantitative comparison
between calculated, simulated and measured magnetic flux
distributions in Fig. 2j, k proves the validity of both the
measurement and the algebraic reconstruction algorithm.

Magnetic vector field inside a superconductor. The real strength
of neutron tensor tomography lies in its applicability to bulk
samples. We chose a cuboid-shaped sample, size 19.5 × 9.5 × 9.5
mm3, of polycrystalline lead, which is a weak neutron but strong
X-ray absorber, to demonstrate the unique possibilities. Lead
becomes superconductive below a critical temperature of 7.2 K.
The sample is cooled down from room temperature to 4.3 K while
applying a magnetic field of strength 0.5 mT (field cooling pro-
cedure, see Methods). Due to the Meissner effect most of the
magnetic field is expelled from the interior of the superconductor.
However some magnetic flux remains within the bulk, mainly in
the (non-superconducting) grain boundaries of the polycrystal-
line material. After switching off the external magnetic field, the
magnetic field trapped along the grain boundaries cannot easily
vanish because a permanent electric current is induced in the
surrounding superconducting grain according to Lenz’s law that
then maintains the field.

TMART reconstruction of the measurement reveals the
structure of the trapped magnetic vector field (Fig. 3a–c). It
consists of a stronger trapped field inside the bulk with vortices
outside. Figure 3d and Supplementary Movie 2 show selected
magnetic field lines in and around the superconductor and
illustrate the complexity of the magnetic field and the power of
the measurement technique to deal with complex vortex-like
magnetic field structures.

The measured magnetic flux density distribution inside the
superconductor exhibits strong variations in intensity and field
orientation in the region of trapped flux, Fig. 4a–c, and features a
network or filament-like structure (Fig. 4a and Supplementary
Movie 3). The magnetic field component along the cuboid axis (y)
shows several pronounced maxima and minima, color-coded in
Fig. 4b, c or given numerically in Fig. 4d, e along selected paths.
At the locations of the five maxima, horizontal cross sections (xz
plane) are taken (Fig. 4b, c). They reveal a magnetic field structure
that consists of four individual maxima (Fig. 4c, e).

Simulation and discussion. These observations suggest how
currents might flow in the superconductor and lead to a simple
model (see Methods) allowing us to reproduce some of the main
features found in the measurement. Variations in the magnetic
field along the (main) symmetry axis of the cuboid (Fig. 4b, f) are
reproduced by assuming corresponding variations in the strength
of the electric current flow in the 5 planes along the~y axis shown
in Fig. 4b, f. The calculated magnetic flux distribution is shown in
Fig. 4f, g. The horizontal magnetic field distributions exhibiting
four maxima, a typical feature of thin rectangular shaped electric
current flows, are reproduced (compare Fig. 4c, g, see also
Fig. 4e). As the simulation is based on uniformly distributed
currents within the planes shown in Fig. 4b,f no further features
with a lower symmetry are reproduced.

Note that it is not this simulation that proves the correctness of
tensor tomography but the experiments and simulations
performed on the coil.

The microscopic origins of the measured non-uniformities of
trapped magnetic flux should be related to structural hetero-
geneities in the material. Since no flux is trapped within single
grains due to the (complete) Meissner effect, the measured
magnetic flux has to be assigned to the grain boundaries.
Variations of the crystal grain size or impurities in the grain
boundaries that act as pinning centers for the trapped flux could
give rise to locally varying conditions. Supplementary Fig. 1
provides an image of the grain structure on the sample. Grain
sizes range from a few 10 µm to some 100 µm all over the sample
with strong local fluctuations. Areas containing smaller grains
also contain more grain boundaries and therefore trap more
magnetic flux. Therefore, the non-uniformities of flux distribu-
tion shown in Fig. 4 appear very plausible.

Conclusions and outlook. In conclusion, tensorial neutron
tomography of the three-dimensional spatial distribution of
magnetic vectors in bulk materials is obtained by using a com-
bination of two spin-polarizers, four spin flippers and a neutron
imaging setup and applying a new iterative mathematical
reconstruction algorithm (TMART). We demonstrate the accu-
racy of the algorithm by first reconstructing a known magnetic
field, after which the very complex convoluted magnetic vector
field of trapped flux in a Pb type I superconductor is measured.

Magnetic tensor tomography will have a wide field of
applications in magnetism research. The technique is non-
destructive and non-invasive and therefore well suited for in-
situ investigations. Applications range from measurements on
high-Tc superconductors where flux trapping and pinning
effects or density distributions of Abrikosov vortices under
varying external conditions can be analyzed to magnetic
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Fig. 1 Tensor tomography. a Schematic drawing of the setup used for tensor tomography with spin-polarized neutrons, comprising spin polarizers (P), spin
flippers (F) and a detector (D). b Selected magnetic field lines around an electric coil (calculation, see text and Methods)
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suprafroths and possibly also magnetic phase transitions and
domain structures. A wide range of applications is expected in
engineering sciences, where the technique can be used, for
example, to analyze currents in electrical devices such as
batteries and fuel cells, or to make visible magnetic structures in
thin electrical steels for electric engines and high-efficiency
transformers. Because neutrons have a high penetration depth
in most elements the technique is not restricted to specific

materials. The technique can be implemented at any modern
neutron imaging instrument.

Further optimization is possible in many ways, for example by
using more efficient 3He spin-polarizers or velocity selectors
instead of solid-state polarisers. Spatial resolution could be
notably improved by using setups for high-resolution neutron
tomography that have been recently introduced or by using future
neutron microscopes that are under development26,27. With such
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Fig. 2 Vectors of the magnetic field produced by an electric coil (including leads). a–c As calculated by the Biot-Savart law, see Methods, Eq. (8).
d–f TMART reconstruction of a simulated (ideal) measurement based on the theoretical field distribution of a–c. g–i Measured magnetic vector field
distribution of the real coil. a, d, g Magnetic field vectors along the horizontal plane as indicated in the inset in a and b. b, e, h Magnetic field vectors along
the vertical plane (see inset in b). c, f, i 3D visualization of selected magnetic field lines. Scale bar, 5 mm. j Magnetic flux distribution along the central
symmetry axis of the electric coil. Calculated magnetic flux distribution (black line) and magnetic flux taken from the simulated measurement (blue line).
k Same as j, but for the measured magnetic flux distribution
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improved setups, spatial resolutions down to some µm should be
achievable. Furthermore, in experiments where periodically
repeating magnetic field and phase changes can be produced
(e.g., relaxation effects in superconductors) time-resolved strobo-
scopic detection techniques especially at spallation sources28 offer
new opportunities for investigating magnetic phenomena on a
time-scale of ms or even µs29.

Methods
Interaction of neutrons with magnetic fields. Because of its spin and intrinsic
magnetic moment a neutron moving through a magnetic field can only take two
possible eigenstates, spin up |↑〉 and spin down |↓〉, with the two different Zeeman
energies ± μ~B, where μ=−9.66236 × 10−27 J ⋅ T−1 is the magnetic moment of the
neutron30,31. The equation of motion of spin~S is described by

d
dt
~S ¼ γ ~S tð Þ´~B tð Þ� �

; ð2Þ

where γ= –1.83247 × 10−8 rad·s−1·T−1 is the gyromagnetic ratio of the neutron.
The polarization ~P of an ensemble of many polarized neutrons is described by

the sum of all spin vectors ~S divided by the number of neutrons. For large
ensembles of neutrons, ~P behaves exactly like a classical magnetic moment ~μ that
experiences a torque ~Γ within a magnetic field32:

~Γ ¼~μ ´~B: ð3Þ

The magnetic moment ~μ starts precessing with the Larmor frequency:

ω ¼ γB: ð4Þ

After traveling for a certain time t and distance x through a magnetic field~B the
neutron beam polarization~P undergoes a rotation dϑ~B around an axis parallel to~B
of

dϑ~B ¼ ωt ¼ ω
x
v
¼ γλm

h
Bx; ð5Þ

where v is the velocity of the neutron, λ the de Broglie wavelength of the neutron
and m= 1.6749 × 10-27 kg the neutron rest mass.

Equation (5) shows that from the measurement of the modulus and the rotation
axis of dϑ~B the magnetic field strength and orientation, i.e., ~B, can be calculated.

Measurement of both the rotation angle and the rotation axis makes it necessary
to perform more than just a single measurement as done previously24, where these
two values could be separated only for uniform magnetic fields but not for general
fields. In our new approach, 9 measurements are performed as described in the
main text and in Fig. 1.

Experimental setup. The measurements are performed at the CONRAD/V7
facility at Helmholtz Center Berlin for Materials and Energy (HZB)33. The
instrument is located at the end of a curved neutron guide providing a spectrum of
cold neutrons between 2 Å and 6 Å. The imaging setup used consists of a Li
scintillator screen that converts neutrons into visible light that is collected by a
CCD camera (Andor DW436N-BV with 2048 × 2048 pixels). The effective pixel
size in all the measurements is 30 × 30 × 30 µm3. The spatial resolution of the set-

up was about 200 µm (measured with a Siemens star test pattern). For the tensorial
neutron tomography measurements a wavelength of 3 Å was chosen.

The solid-state spin-polarizers34 P1 and P2 in Fig. 1 consists of several 250-µm
thick bent Si wafers coated on one side with polarizing FeCo supermirrors and on
the other side with strongly neutron absorbing Gd and positioned in a magnetic
field. These two coatings either deflect or absorb neutrons depending on their spin
orientation relative to the magnetic field. The curvature causes a displacement of
250 µm halfway through the spin-polariser and thus avoids straight and
undeflected beam paths. The measured transmission is approximately 30%, the
beam cross-section 15 mm × 40mm (width × height) and the measured degree of
spin-polarization ∼95%.

A closed-cycle refrigerator with neutron-transparent aluminum windows is
used for sample cooling down to 4.3 K. A cylindrical Helmholtz coil set-up with
coil diameters of 600 mm generated the magnetic fields for the flux trapping
experiments. A superconducting cuboid-shaped lead sample of dimensions 19.5 ×
9.5 × 9.5 mm3 is cooled to 4.3 K while an external magnetic field of 0.5 mT
(measured with a Hall probe) is applied (field cooling procedure). Then the
external field is switched off and the tensorial neutron tomographic measurement
procedure started.

Measurement procedure. One exemplarily setting for the spin flippers is shown
in Fig. 1a. Neutron beam spin polarization is flipped by π

2 around the~z axis (the
flight path of the neutrons as indicated by the vector arrows in Fig. 1a) in two steps
by two separate π

2 flips, first around the ~x (by F1), then around the~y axis (by F2)
(i.e., the polarization will finally become parallel to the ~x axis). If no spin-
polarization change is caused by the sample (as shown in Fig. 1a) the spin is flipped
back into its original orientation around the~z axis by the second pair of spin
flippers (F3/F4). This flipper configuration is called ~xi~xf below. Therefore, the
transmission signal through analyzer P2 (see Fig. 1a) is (ideally) 100% if one
ignores the attenuation caused by neutron absorption or/and scattering by the
sample (and the analyzers P1 and P2). Any modification of polarization by the
sample will reduce transmission to a value below 100%.

In total there are 3×3 possible flipper configurations termed~xi~xf ,~xi~yf ,~xi~zf ,~yi~xf ,
~yi~yf ,~yi~zf ,~zi~xf ,~zi~yf ,~zi~zf , where, e.g., ~xi~zf means that flippers F1/F2 initially rotate
into the ~x axis, while F3/F4 finally flip into the~z axis. All these configurations are
applied in 9 independent measurements allowing us to measure the change in spin-
polarization of the neutron beam along any path through the sample, thus yielding
a radiograph of spin rotations. For a three-dimensional measurement of the
magnetic vector field (tomography), the sample is rotated stepwise covering a full
circle35. For each rotation step, nine radiographic projection images (~xi~xf through
~zi~zf ) are taken. 300 such radiographic projection sets are acquired for each
tomography with 120 s exposure time for each projection.

The maximum measurable magnetic field strength strongly depends on the
extension and on the spatial resolution achieved. The smaller the extension of the
field (and hence the sample) and the higher spatial resolution, the higher is also the
possible magnetic field strength that can be measured. With the settings of the set-
up presented here, arbitrary magnetic fields of some mT strength can be measured
within a volume of some 10 mm3. The TMART algorithm (see below) allows for
the incorporation of a priori assumptions. If a rough estimate of the magnetic field
strength is available the values iterated by the algorithm can be limited to a certain
range. In this case, stronger fields are accessible provided the variations of the field
strength within the region of interest are not larger than 10 mT. In addition, a
combination with high-resolution neutron imaging setups and possibly spin-echo
or multi-wavelength techniques could further shift this limit to much higher
magnetic field strengths (over 100 mT) in future experiments.

The lower limit for the measureable magnetic field strength depends very much
on the quality of shielding of the magnetic field of the Earth and other external
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Fig. 3 Magnetic vector field inside a superconducting lead sample measured at T= 4.3 K. a Some selected magnetic field lines show the location of the
magnetic field inside the sample indicated by the cuboid. b Magnetic field lines in a selected xy plane (silhouette of the lead sample marked by dotted
lines). Scale bar, 5 mm. c Magnetic field lines in a selected xz plane. Scale bar, 5 mm. d Selected swirling magnetic field lines as also seen in Supplementary
Movie 2. Scale bar, 5 mm
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effects. In the measurement presented here on a superconductor the lower limit
was in the range of µT.

Tomographic reconstruction technique. The new tensorial algebraic recon-
struction technique (TMART) is based on the known MART algorithm36, but uses
3 × 3 tensors instead of scalar values (see general overview in Supplementary
Fig. 2). In contrast to MART, where only a single 3D data set is used as an input
to create another single 3D data set as an output, the TMART algorithm is based
on tensor calculations that calculate the three different components of the magnetic
vector field from a set of nine spin-polarized neutron imaging measurements.

A neutron beam passing the volume element αi within the sample will undergo
a rotation around the magnetic vector field orientation unit vector~ni. This rotation
is described by the tensor T ~ni; αið Þ (a rotation matrix). The rotation angle has to be
below 180°, which is ensured by choosing a small enough volume element or
limiting the magnetic field. After moving through a series of volume elements α1,
α2, …, αN the corresponding tensor Tfinal ~n; αð Þthat describes the resulting total
rotation of neutron spin polarization is

Tfinal ~n; αð Þ ¼ T ~nN ; αNð Þ � ¼ � T ~ni; αið Þ � ¼ � T ~n1; α1ð Þ ¼
Y1
i¼N

T ~ni; αið Þ: ð6Þ

The neutron beam polarization after passing the sample ~Pfinal (see main text)
then is

~Pfinal ¼ Tfinal ~n; αð Þ �~P0: ð7Þ

The TMART algorithm is an iterative algorithm that starts with constant values
for the entire magnetic vector field. Then, a set of 9 projection images (i.e., a
measurement of this magnetic vector field is simulated) and their deviations from
the (real) measurement results are calculated. From this comparison, correction
multipliers for the magnetic vector field, i.e., for the tensors used in Eq. (6), are
calculated in order to partially correct the magnetic field values. With the new
updated results for the magnetic vector field the next iteration steps starts. The
strength of the multiplicative corrections is weighted with a relaxation (or
damping) factor that is constantly reduced during iteration to prevent divergence
of the procedure. A path length correction is implemented as the intersection of a
given ray with a quadratic pixel may have a varying length, see Supplementary
Fig. 3. MART is different and computationally more challenging than the filtered
backprojection algorithm usually used for tomography but allows for solving the
problem of tensorial tomography in an elegant way37.
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Simulation of the coil and the trapped magnetic flux. The magnetic vector field
~B ~rð Þ generated by an electric current at location~r is calculated by using the Biot-
Savart law

~B ~rð Þ ¼ μ0
4π

R
C

Id~l ´~r′
~r′j j3 ; ð8Þ

where I is the electric current along segment d~l of path C and~r′ the distance
between d~l and~r. The electric coil has an inner diameter of 10 mm, a length of 12
mm and 9.5 turns and is made of 1-mm thick aluminum wire. The electric current
applied is 0.75 A. Due to limitations of manufacture the geometry of the measured
coil slightly differs from the ideal shape assumed for the calculation and simulated
measurement.

For calculating the field in the superconductor, electric currents circulating
around the superconductor in the five planes marked by horizontal green lines in
Fig. 4f are assumed. More specifically, current flow is along a rectangular path
around the sample and equally distributed in a zone reaching from the outer edge
of the superconductor to 2.5 mm below its surface. The five currents are varied in a
way that the resulting magnetic flux fits to the measured results shown in Fig. 4a–c.
From top to bottom in Fig. 4, the values are 0.933A, 0.655A, 0.535A, 0.584A, and
0.937A.

These calculations represent a simplification of the real current flows inside the
superconducting sample that is in fact much less uniform and distributed over the
whole volume as can be clearly seen in Fig. 4a–c and the Supplementary Movie 3.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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