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S1. Parameters used for the simulations 

The parameters related to solute diffusion used in the simulations are all taken from Mantina et al. 

[1]. They were calculated by first principles using the local density approximation to density 

functional theory, see Table. S1. The atomic jump frequencies 𝑤𝑘, 𝑘 = 0..4, are calculated from 

Eq. (4) of Ref. [1] the correlation factor 𝑓2 from Eqs. (2, 3) of Ref. [1] for a given temperature and 

atom species. 

Table S1. Diffusion parameters as taken from Mantina et al. [1]. 

atom 𝑖 ∆𝐻𝑓,0 / ∆𝑆𝑓,0 ∆𝐻𝑚,0 𝑣0
∗ ∆𝐻𝑚,𝑘

𝑖  
(k=1..4) 

𝑣𝑘
∗,𝑖

  
(k=1..4) 

∆𝐻𝑏
𝑖  / ∆𝑆𝑏

𝑖  

 

 (eV) / (kB)   (eV)   (THz) (eV) (THz) (eV) / (kB) 

Al 0.71 / 1.21 0.58  16.6    

 

Mg    0.68 

0.42  

0.50 

0.57 

21.8 

18.6  

13.3 

17.1 

0.07 / 0.27 

Si    0.52 

0.55 

0.66 

0.55 

10.9 

15.7  

22.3 

13.7 

0.11 / 0.44 

used in Eqs. (5,7): 𝑥𝑣−𝑒𝑞 

(6): �̃�𝑒𝑞 

(6): �̃�𝑒𝑞  (3): 𝑤2, 𝑓2 

(6): �̃�𝑒𝑞 

(3): 𝑤2, 𝑓2 

(6): �̃�𝑒𝑞 

(8): 𝑥𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖  

(6): �̃�𝑒𝑞 

 

∆𝐻𝑓,0
 , ∆𝑆𝑓,0

 :  free (index ‘0’) vacancy formation enthalpy and entropy, ∆𝐺𝑓,0
 =∆𝐻𝑓,0

 −𝑇 ∆𝑆𝑓,0
  

∆𝐻𝑚,0
 , (∆𝑆𝑚,0

 ): free (index ‘0’) vacancy migration enthalpy* 

∆𝐻𝑚,𝑘
𝑖  (∆𝑆𝑚,𝑘

𝑖 ): solute migration enthalpy* of the 5 jumps and species 𝑖. 𝑘=2 is solute-vacancy exchange. 

𝑘=0 represents vacancy migration in the free Al lattice, hence ∆𝐻𝑚,0
𝑖 = ∆𝐻𝑚,0 for all 𝑖. 

𝑣𝑘
∗,𝑖  effective frequency in transition state theory (TST) (𝑣0

∗: fully in Al matrix) 

𝐻𝑏
𝑖 ,𝑆𝑏

𝑖 :  solute-vacancy binding enthalpy and entropy, 𝐺𝑏
𝑖 = 𝐻𝑏

𝑖 − 𝑇𝑆𝑏
𝑖  for species 𝑖 

* migration entropies also available from Ref. [2] but not used here to maintain consistency of data.  
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The average diffusion coefficient �̃�𝑒𝑞 is calculated by: 

 �̃�𝑒𝑞 = 𝑎
2 ((1 − ∑ 𝑐𝑖𝑖 )𝑓0 ∙ 𝑣0

∗ ∙ 𝑒−
∆𝐻𝑚,0
𝑘𝑇 + ∑ 𝑐𝑖𝑓2

𝑖 ∙ 𝑣2
∗,𝑖 ∙ 𝑒−

∆𝐻𝑚,2
𝑖

𝑘𝑇𝑖 𝑒
𝐺𝑏
𝑖

𝑘𝑇)𝑒−
∆𝐻𝑓,0

𝑘𝑇 𝑒
∆𝑆𝑓,0

𝑇 . 

Vacancy trapping by clusters is guided by the following considerations: 

 Vacancy-cluster interaction energy 𝐻𝑏
cl: 0.2 eV at onset of ageing, 0.306 eV after short ageing  

(=0.2), 0.581 eV after advanced ageing (0.7) (energy values from Ref. [3],  values 

estimated), 

 Cluster number density increases linearly from 0 to 61024 m-3 (i.e. site fraction 𝑐cl from 0 to 

10-4) during ageing. 

Hence the parametrisation: 𝐻𝑏
cl = (0.2 + 0.53 ) [eV]  and 𝑐cl =10-4  is applied. 

 

Table S2. Further parameters in calculations. 

𝑎 𝑅 𝑛jog 𝑛𝑑 𝑛𝑝 𝑓0 𝑇𝑐𝑠 𝑑𝑇 𝑑𝑡⁄  

0.405 nm 25 µm 3.71019 m-3 7.51011 m-2 50 0.7815 200 °C 1000 Ks-1 

𝑎:  lattice constant of aluminium 

𝑅:  grain radius (determined by light microscopy) 

𝑛jog = 
𝑛𝑑

𝑛𝑝𝑎
: jog density derived from dislocation density 𝑛𝑑  and jog spacing 𝑛𝑝. This value is not very 

well known. 𝑛𝑑 = 1011 m-2 has been used in a previous calculations [4], 𝑛𝑑 = 31011 m-2 by 

others including the current author’s group [5, 6]. In Ref. [5] it was noted that such a value 

explained initial quenching from 540 °C well, but that subsequent operations at lower 

temperatures, e.g. at 180 °C, indicated a markedly higher value. Possibly, 𝑛𝑑 changes during 

thermal processing. The value chosen here is deemed a compromise between various cases. 

The quantity 𝑛𝑝 is also not known precisely. Values of 100 have been given based on 

theoretical considerations [7]. As 𝑛𝑝 can be compensated by 𝑛𝑑 without changing the 

relevant quantity 𝑛jog, there is a lot of space for finding values.  

𝑓0: fcc correlation factor (=0.7815) 

𝑇𝑐𝑠:  cluster start temperature. Determines that during initial quenching from the solutionising 

temperature, precipitation does not set in above 𝑇𝑐𝑠 in accordance with experimental 

findings in Ref. [8]. Variations of this value within the margin set by other sources (160 °C 

as calculated by Ref. [9], 175 °C and possibly higher for excess Mg [10]) have only a very 

small effect on results. 

𝑑𝑇 𝑑𝑡⁄ : average quenching rate from the solutionising temperature (540 °C) to 0 °C. The 

temperature course applied is a decaying exponential so that the cooling rate is initially 

higher.  
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S2. Equations of the trapping model  

Temporary trapping of vacancies by solute atoms is an important ingredient of the model applied. 

We follow the formalism proposed by Lomer and extend the model by optional trapping by clusters 

(all of equal size).   

Among 𝑁 lattice sites we distinguish between sites where vacancies are adjacent (‘trapped’) to one 

of the solute atoms 𝑖, site fraction 𝑐𝑖, 𝑧 = 12 neighbouring sites, or adjacent to one of the clusters 

containing 𝑁cl atoms each and having site fractions 𝑐𝑐𝑙 and with 𝑧𝑐𝑙 neighbouring sites, or at the 

remaining matrix sites. The number of vacancies in equilibrium in each of the three cases is given 

by the vacancy formation free enthalpy ∆𝐺𝑓,0
 = ∆𝐻𝑓,0

 − 𝑇∆𝑆𝑓,0
 , see Table S1: 

𝑁𝑣−𝑒𝑞,𝑚𝑎𝑡
  = 𝑁 exp (−

∆𝐺𝑓,0
 

𝑘𝑇
) (1 − (𝑧 + 1)∑ 𝑐𝑖𝑖 − (𝑧cl + 𝑁cl)𝑐cl) (S1) 

𝑁𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖 = 𝑁 exp (−

∆𝐺𝑓,0
 

𝑘𝑇
) 𝑧𝑐𝑖 exp (

∆𝐺𝑏
𝑖

𝑘𝑇
) (S2) 

𝑁𝑣−𝑒𝑞,𝑡𝑟𝑝
cl = 𝑁 exp (−

∆𝐺𝑓,0
 

𝑘𝑇
) 𝑧cl𝑐cl exp (

∆𝐻𝑏
cl

𝑘𝑇
) (S3) 

The total number of vacancies anywhere is then the sum of the three:  

𝑁𝑣−𝑒𝑞
 = 𝑁𝑣−𝑒𝑞,𝑚𝑎𝑡

 + ∑ 𝑁𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖 +𝑁𝑣−𝑒𝑞,𝑡𝑟𝑝

𝑐𝑙 
𝑖  = 𝑁 exp (−

∆𝐺𝑓,0
 

𝑘𝑇
) ×  

               (1 − (𝑧 + 1)∑ 𝑐𝑖𝑖 − (𝑧cl + 𝑁cl)𝑐cl) + ∑ 𝑧𝑐𝑖 exp (
∆𝐺𝑏

𝑖

𝑘𝑇
)𝑖  + 𝑧𝑐𝑙𝑐

cl exp (
∆𝐻𝑏

cl

𝑘𝑇
)

⏟                                                
𝐿

 (S4) 

The term under the brace we call the ‘Lomer factor’, 𝐿 

By dividing the numbers in Eqs. (S1, S2) by the number of matrix or trap sites we obtain the 

probability of a matrix or trap site of being occupied by a vacancy: 

𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡
 =

𝑁𝑣−𝑒𝑞,𝑚𝑎𝑡
 

𝑁(1−(𝑧+1)∑ 𝑐𝑖𝑖 −(𝑧cl+𝑁cl)𝑐cl) 
= exp (−

∆𝐺𝑓,0
 

𝑘𝑇
)  (S5) 

= local site fraction in matrix wrt. actual matrix lattice sites excluding lattice sites around solutes 

or clusters, and 

𝑥𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖 =

𝑁𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖 

𝑁𝑧𝑐𝑖 
= exp (−

∆𝐺𝑓,0
 −∆𝐺𝑏

𝑖

𝑘𝑇
) (S6) 

= local site fraction around solute of type 𝑖 wrt. actual trap lattice sites. In analogy 𝑥𝑣−𝑒𝑞,𝑡𝑟𝑝
cl . 
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Hence: 

𝑥𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖 = 𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡

 exp (
∆𝐺𝑏

𝑖

𝑘𝑇
), (S7) 

By dividing the numbers in Eqs. (S1-S3) by the total lattice sites 𝑁, average site fractions are 

obtained, which receive the letter 𝑦: 

𝑦𝑣−𝑒𝑞,𝑚𝑎𝑡
  =

𝑁𝑣−𝑒𝑞,𝑚𝑎𝑡
 

𝑁  
= (1 − (𝑧 + 1)∑ 𝑐𝑖𝑖 − (𝑧cl + 𝑁cl)𝑐cl) exp (−

∆𝐺𝑓,0
 

𝑘𝑇
)⏟        

𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡
 

 (S8) 

𝑦𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖 =

𝑁𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖 

𝑁 
= 𝑧𝑐𝑖 exp (−

∆𝐺𝑓,0
 

𝑘𝑇
) exp (

∆𝐺𝑏
𝑖

𝑘𝑇
)

⏟              
𝑥𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖 

 (S9) 

𝑦𝑣−𝑒𝑞,𝑡𝑟𝑝
cl =

𝑁𝑣−𝑒𝑞,𝑡𝑟𝑝
cl 

𝑁 
= 𝑧cl𝑐cl  exp (−

∆𝐺𝑓,0
 

𝑘𝑇
) exp (

∆𝐻𝑏
cl

𝑘𝑇
)

⏟              
𝑥𝑣−𝑒𝑞,𝑡𝑟𝑝
cl 

 (S10) 

And therefore 

𝑦𝑣−𝑒𝑞
 =

𝑁𝑣−𝑒𝑞,𝑚𝑎𝑡
 + ∑ 𝑁𝑣−𝑒𝑞,𝑡𝑟𝑝

𝑖 
𝑖 +𝑁𝑣−𝑒𝑞,𝑡𝑟𝑝

𝑐𝑙 

𝑁 
= exp (−

∆𝐺𝑓,0
 

𝑘𝑇
) × 𝐿 (S11) 

The total equilibrium vacancy site fraction in a defect-free lattice, exp (−
∆𝐺𝑓,0

 

𝑘𝑇
), is therefore 

increased by the Lomer factor. Note that the 𝑦 quantities do not have to be calculated in the 

simulation, thus they are not introduced in the main paper. They are shown here to present the 

conservation of total vacancies during vacancy trapping and repartitioning since only these 

quantities can be summed up in the style of Eq. (S11). For the total vacancy site fraction we have: 

𝑦𝑣−𝑒𝑞
 = 𝑥𝑣−𝑒𝑞

   (S12) 

By inserting Eq. (S9) into Eq. (S11) we obtain the inverse Lomer equation Eq. (8) in the main paper 

used for determining 𝑥𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖  to be used in the precipitation equation (3). It is not restricted to 

equilibrium, which is why we drop the index ‘eq’: 

𝑥𝑣,𝑡𝑟𝑝
𝑖 = 

exp(
∆𝐺𝑏
𝑖

𝑘𝑇
)

𝐿
𝑥𝑣
  (S13) 

The calculations in Secs. 4.2. and 4.3 are carried out without cluster trapping, i.e. all terms indexed 

with “cl” in above equations are neglected. In Eq. (S1) we tacitly assume that the decreasing 

number of solute atoms and the associated trapping is implicitly compensated by increasing cluster 

trapping. 
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In Sec. 4.4 we include cluster trapping explicitly. The four cluster-related quantities 𝑧cl, 𝑁cl, 𝑐cl 

and ∆𝐻𝑏
cl are treated in reasonable approximations:  

 𝑧cl = 𝑧 = 12, i.e. the cluster is treated as a point like defect 

 (𝑧cl + 𝑁cl)𝑐cl in Eq. (S1) is neglected because 𝑐cl ≪ 𝑐𝑖 

 𝑐cl and ∆𝐻𝑏
cl are assumed to increase continuously with the progress of clustering based on 

reported cluster number densities/site fractions and vacancy-cluster binding energies, see 

main paper and Sec. S1 above. 

In order to avoid double counting of trapping sites, we replace all terms 𝑐𝑖 in above equations by 

𝑐𝑖(1 − 𝛼𝑖). Thus, as cluster trapping increases, solute trapping decreases, both linearly with 

progressing clustering. 

Francis and Curtin have derived equations for the trapping of vacancies by a single solute type with 

the objective of engineering the vacancy site fraction [11]. Their results are based on more general 

and exact thermodynamic considerations than those by Lomer but contain Lomer’s equations as a 

limiting case. Their Eqs. (5a, 5b) describe the concentration of vacancies not associated to a solute 

and those in the vicinity of solute atoms at thermal equilibrium and correspond to above Eqs. 

(S8, S9), respectively. This can be seen by considering only single vacancies, hence 𝜂 = 𝑧 + 1 =

13 in their equations. Next, their definition of the solute-vacancy binding energy differs from ours 

by the sign. Replacing the absolute energy of solute-vacancy complexes in their Eqs. by the binding 

energy we obtain 

‘concentration of vacancies in the matrix’:   𝑐𝑉 = 𝑦𝑣−𝑒𝑞,𝑚𝑎𝑡
    

‘concentration of solute/vacancy complexes’:  𝑐𝑖 =
𝑦𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖 

1+
𝑦𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖 

𝑐𝑖

≈ 𝑦𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖                    (S14) 

Where only on the l.h.s of these equations the notation of Ref. [11] is used. In the denominator of 

the latter equation 
𝑦𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖 

𝑐𝑖
= 𝑧 𝑥𝑣−𝑒𝑞,𝑡𝑟𝑝

𝑖  using Eq. (S8, S9). 𝑥𝑣−𝑒𝑞,𝑡𝑟𝑝
𝑖  never exceeds 410-4 as 

shown in Fig. 4a and hence the denominator is very close to 1. 

 

S3. The pre-factor 𝑝att 

Eq. (2) contains a dimensionless pre-factor 𝑝𝑎𝑡𝑡 that we have assumed to be constant throughout 

the calculations. Its value has been fixed to 810-6 since at this value the ageing curves are divided 

into an excess and equilibrium part in roughly the same proportions as observed experimentally. 
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For example, the height of the clustering peak in the DSC curves in Fig. 6a is about 1/3 of that of 

the high-temperature peak and in Fig. 4d, approximately the same ratio is observed between first 

and second reaction (horizontal line) in accordance with the experiments. 𝑝att describes how likely 

it is that a diffusing solute atom reaches a target and forms a complex with it, after which the 

vacancy detaches again and is available for further diffusion. 

Clearly, the site fraction of the target objects is part of 𝑝att. For solute atoms, it ranges around 𝑐 =

5 × 10−3 for the alloy considered here. As solutes are replaced by clusters it might drop as 

clustering proceeds but we keep to the initial value. Therefore, the pre-factor used splits up into 

𝑝att = 5 × 10
−3 × 0.0016 = 8 × 10−6 . The remaining unexplained factor 0.0016 contains the 

attachment probability and possibly other factors. 

The attachment of solutes to other solutes is a complicated process governed by a range of 

interaction energies. A recent first-principle calculation of these energies between 2 atoms (Mg,Si) 

and one vacancy specifies 7 configurations and next neighbour and second next neighbour values 

that range from 0.01 to 0.14 eV [12]. The actual attachment might go through various steps, 

possibly also involving interaction energies between more distant objects that can be repulsive in 

some cases [13]. The attachment probability would then depend on a combination of such energies 

and be temperature dependent. We currently have no formalism to calculate such a scenario, but 

the average value of 0.0016 for the remaining factor does not seem unlikely. Our choice of 𝑝att, 

although adjusted to experiments, is compatible with some qualitative assumptions of cluster 

formation. 

 

S4. Maximum precipitation caused by excess vacancies 

We now calculate the maximum precipitated fraction caused by excess vacancies as a function of 

ageing temperature. For simplicity, only one solute type and no vacancy trapping by clusters is 

considered in the calculation. The objective is to support interpretation of the numerical results in 

Fig. 4d by identifying elementary quantities that lead to the behaviour observed there. 

First, the total increase of 𝛼 can be written as  

𝛼 = 𝛼𝑒𝑥 + 𝛼𝑒𝑞, (S15) 

where subscripts ‘ex’ and ‘eq’ represent the fractions caused by excess vacancies and equilibrium 

vacancies, respectively. Similarly, at any moment the local vacancy site fraction at a site around 

solutes can be considered a sum of equilibrium and excess vacancy site fractions: 
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𝑥𝑣,𝑡𝑟𝑝 = 𝑥𝑣−𝑒𝑥,𝑡𝑟𝑝 + 𝑥𝑣−𝑒𝑞,𝑡𝑟𝑝,  (S16) 

where 𝑥𝑣−𝑒𝑞,𝑡𝑟𝑝 is calculated using Eq. (S7). Combining Eqs. (S7, S15, S16) and Eqs. (3, 7) of the 

main paper, we obtain 

𝑑𝛼𝑒𝑥

𝑑𝑡
= 𝐴 ∙ (1 − 𝛼) ∙ 𝑓2 ∙ 𝑣2

∗ ∙ 𝑒−
∆𝐻𝑚,2
𝑘𝑇 ∙ 𝑒

∆𝐺𝑏
𝑘𝑇 ∙ (𝑥𝑣,𝑚𝑎𝑡 − 𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡). (S17) 

Next, we calculate 𝑥𝑣,𝑚𝑎𝑡 from the kinetic Eq. (6) of the main paper. Note that 𝑥𝑣−𝑒𝑞 = 𝐿 ∙

𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡 in Eq. (6), where 𝐿 is the ‘Lomer factor’ based on vacancy trapping by solutes.  

Integrating Eq. (6) for 𝑥𝑣 for isothermal ageing at temperature 𝑇, and applying 𝑥𝑣,𝑚𝑎𝑡 =
𝑥𝑣

𝐿
, we 

obtain 

𝑥𝑣,𝑚𝑎𝑡 = 𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡 ∙ (
𝑥𝑣,0

𝐿∙𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡
)
𝑒
−(
15

𝑅2
+2𝜋𝑎njog)

�̃�𝑒𝑞
𝑓0∙𝐿∙𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡

 𝑡

  (S18) 

where 𝑥𝑣,0 is the initial total vacancy fraction before ageing, which is lower than the equilibrium 

fraction at 540 °C as some vacancies are lost during quenching. As 𝑡 → ∞, 𝑥𝑣,𝑚𝑎𝑡 → 𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡. 

Now, we combine Eqs. (S17, S18) to integrate 𝛼𝑒𝑥. Since the initial site fraction is several orders 

of magnitude higher than the equilibrium fraction, 𝛼𝑒𝑞 ≪ 𝛼𝑒𝑥 is valid till 𝑥𝑣,𝑚𝑎𝑡 is very low, after 

which the increase in 𝛼𝑒𝑥 can also be neglected. Therefore we apply an approximation 𝛼 ≅ 𝛼𝑒𝑥 in 

Eq. (S17) for the calculation of 𝛼𝑒𝑥. Thus, we obtain 

𝛼𝑒𝑥 = 1 − 𝑒
[−𝐴∙𝑓2∙𝑣2

∗∙𝑒
−
∆𝐻𝑚,2
𝑘𝑇 ∙𝑒

∆𝐺𝑏
𝑘𝑇 ∙∫ (𝑥𝑣,𝑚𝑎𝑡−𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡)𝑑𝑡

∞
0 ]

 

        = 1 − 𝑒
[−

𝐴𝑓0𝑥𝑣,0

(
15

𝑅2
+2𝜋𝑎𝑛jog)𝑎

2
∙
𝐷2
�̃�𝑒𝑞

∙𝐿∙𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡∙{𝐸𝑖[ln(
𝑥𝑣,0

𝐿∙𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡
)]−𝛾−ln[ln(

𝑥𝑣,0
𝐿∙𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡

)]}]

, (S19a)  

where 𝐸𝑖 is the exponential integral function and 𝛾 is the Euler-Mascheroni constant, and where 

𝐷2(𝑇) = 𝑎
2 ∙ 𝑓2 ∙ 𝑣2

∗ ∙ 𝑒−
∆𝐻𝑚,2
𝑘𝑇 ∙ 𝑒

∆𝐺𝑏
𝑘𝑇 ∙ 𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡. 

Eq. (S19a) can be condensed to  

𝛼ex(𝑇) = 1 − 𝑒
[−𝐵∙

𝐷2(𝑇)

�̃�𝑒𝑞(𝑇)
 𝜁(𝑇)]

 (S19b)  

by defining 𝐵 =
𝐴𝑓0𝑥𝑣,0

(
15

𝑅2
+2𝜋𝑎𝑛jog)𝑎

2
,  

and 𝜁(𝑇) = 𝐿 ∙ 𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡 ∙ {𝐸𝑖 [ln (
𝑥𝑣,0

𝐿∙𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡
)] − 𝛾 − ln [ln (

𝑥𝑣,0

𝐿∙𝑥𝑣−𝑒𝑞,𝑚𝑎𝑡
)]}.  

These quantities are given in Fig. 8a of the main paper. The temperature dependence of Eq. (S19b) 

= Eq. (9) of the main paper determines the broken line in Fig. 4b and reflects the hardening 

anomaly.  
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S5. Additional graphs that help to understand details of calculation  

In the following, we show some aspects of the simulations not mentioned in the main paper. 

 

  

Fig. S1. Data presented in Fig. 4d and data calculated in addition with a correction for solute 

consumption due to clustering in Eq. (7, 8) using the ansatz 𝑐𝑖 = 𝑐initial
𝑖 (1 − 𝜅𝑖𝛼𝑖), where 𝜅 is the 

fraction of solute atoms that after final ageing has been transferred into clusters and precipitates. 

Atom probe experiments suggest 𝜅𝑖 values between 0.15 and 0.25 for NA and short AA [14-16], 

but as very small clusters might not be detected as such 𝜅𝑖 could be higher. However, the 

calculation suggests that application of a correction does hardly influence the results. We therefore 

assume 𝑐𝑖 = 𝑐initial
𝑖  in all the calculations to avoid introduction of additional parameters. 
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Fig. S2. Derivatives of 𝑥𝑣 in the vacancy annihilation model during quenching and subsequent 

linear heating. ‘dislocation jogs’ and ‘grain boundaries’ refer to the two contributions in Eq. (6) of 

the main paper that remain at a constant fraction during ageing, the first being about 6 times higher. 

In the pure ternary alloys with their mm-sized grains as compared to the more fine grained alloy 

6014 (50 µm grain diameter) in Figure 3 of the main paper, the vacancy annihilation rate would 

therefore be marginally smaller, provided that the density of dislocation jogs was the same.  
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Fig. S3. Calculated vacancy site fraction at Si sites during constant heating at 10 K·min-1. (a) After 

NA at 20°C for various times without vacancy trapping by clusters, (b) same with trapping by 

clusters included, see Sec. 4.4. Without trapping by clusters in a), the vacancy site fraction is 

reduced to 10-10 after 106 s during NA, whereas in the presence of trapping by clusters this reduction 

is less pronounced (b). Moreover, in a), during subsequent linear heating the vacancy site fraction 

decreases towards the equilibrium value (orange line) at the respective temperature, whereas in b) 

the vacancy site fraction increases for a limited period delimited by the broken line. The reason is 

that after long NA (e.g. 3105 s), 99.5% of all he vacancies are trapped by clusters and only 0.5% 

are at Si sites (210-4 are free), hence the slow diffusion. Linear heating releases vacancies from 

clusters and brings them into solution (6%) or into vacancy-Si complexes (9%). 

 

  

Fig. S4. Analogous to Figs. 4c,d, but with vacancy-cluster interactions enabled as described in 

Sec. 4.4. The main effect is to make the curves appear flatter. 
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Fig. S5. Effect of a change of binding energy between Mg and vacancies Δ𝐻𝑏
Mg

 from 0.07 eV 

(Mantina’s value used in this paper) to 0.01 eV (value suggested by Ref. [12]). Other parameters 

are still the ones given by Mantina, see Table S1. Therefore, the modified parameter set is not 

entirely consistent any more. The pre-factor 𝑝att has been reduced to ½ of the original value thus 

ensuing that the clustering peak still has roughly the same height. The total precipitation course 

during linear heating (black lines) differs mainly in the high-temperature region. However, we see 

a shift of clustering activity from Si to Mg caused by the stronger trapping of vacancies by Mg 

atoms and the correspondingly enhanced Mg diffusion and precipitation. Most importantly, the 

dual structure of an excess-vacancy related low-temperature peak and a well separated high-

temperature peak is not affected. Therefore, even if the binding energies are allowed to vary the 

conclusions of this paper remain valid. 



12 
 

0 50 100 150

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

d


/d
T

T (°C)

 dalpha-MgSi

 dalpha-MgSiCu

 

Fig. S6. Fig. 7c of the main paper recalculated with the addition of 0.12 wt.% Cu using the diffusion 

data given by Ref. [1] as for Mg and Si. The influence of Cu diffusion is very small. 

 

  



13 
 

References 

 
[1]  M. Mantina, Y. Wang, L.Q. Chen, Z.K. Liu, C. Wolverton, First principles impurity 

diffusion coefficients, Acta Materialia 57 (2009) 4102-4108. 

[2]  M. Mantina, Y. Wang, R. Arroyave, S.L. Shang, L.Q. Chen, Z.K. Liu, A first-principles 

approach to transition states of diffusion, Journal of Physics-Condensed Matter 24 (2012) 

305402. 

[3]  A. Jain, A. Glensk, D. Marchant, M. Ceriotti, W.A. Curtin, Vacancy prisons and solute 

clustering in aluminium alloys, International Conference on Aluminium Alloys ICAA, Oral 

presentation, 2020. 

[4]  P. Dumitraschkewitz, P.J. Uggowitzer, S.S.A. Gerstl, J.F. Löffler, S. Pogatscher, Size-

dependent diffusion controls natural aging in aluminium alloys, Nature Communications 10 

(2019) 4746. 

[5]  M. Madanat, M. Liu, X.-P. Zhang, Q.-N. Guo, J. Cizek, J. Banhart, Co-evolution of 

vacancies and solute clusters during artificial ageing of Al-Mg-Si alloys, Physical Review 

Materials 4 (2020) 063608. 

[6]  A. Falahati, P. Lang, E. Kozeschnik, Precipitation in Al-alloy 6016 - the role of excess 

vacancies, Materials Science Forum 706-709 (2012) 317-322. 

[7]  A.J. Ardell, H. Reiss, W.D. Nix, Statistics of jogs on dislocations at equilibrium, Journal of 

Applied Physics 36 (1965) 1727-1732. 

[8]  Z. Yang, X.H. Jiang, X.-P. Zhang, M. Liu, Z.Q. Liang, D. Leyvraz, J. Banhart, Natural 

ageing clustering under different quenching conditions in an Al-Mg-Si alloy, Scripta 

Materialia 190 (2021) 179–182. 

[9]  M.J. Starink, L.F. Cao, P.A. Rometsch, A model for the thermodynamics of and 

strengthening due to co-clusters in Al-Mg-Si-based alloys, Acta Materialia 60 (2012) 4194-

4207. 

[10]  A. Poznak, R.K.W. Marceau, P.G. Sanders, Composition dependent thermal stability and 

evolution of solute clusters in Al-Mg-Si analyzed using atom probe tomography, Materials 

Science and Engineering A 721 (2018) 47-60. 

[11]  M.F. Francis, W.A. Curtin, Microalloying for the controllable delay of precipitate 

formation in metal alloys., Acta Materialia 106 (2016) 117-128. 

[12]  J. Peng, S. Bahl, A. Shyam, J.A. Haynes, D.W. Shin, Solute-vacancy clustering in 

aluminum, Acta Materialia 196 (2020) 747–758. 

[13]  T. Saito, E.A. Mortsell, S. Wenner, C.D. Marioara, S.J. Andersen, J. Friis, K. Matsuda, R. 

Holmestad, Atomic Structures of Precipitates in Al-Mg-Si Alloys with Small Additions of 

Other Elements, Advanced Engineering Materials 20 (2018). 

[14]  J. Buha, R.N. Lumley, A.G. Crosky, K. Hono, Secondary precipitation in an Al-Mg-Si-Cu 

alloy, Acta Materialia 55 (2007) 3015-3024. 

[15]  L.F. Cao, P.A. Rometsch, M.J. Couper, Effect of pre-ageing and natural ageing on the paint 

bake response of alloy AA6181A, Materials Science and Engineering A 571 (2013) 77-82. 

[16]  M.W. Zandbergen, Q. Xu, A. Cerezo, G.D.W. Smith, Study of precipitation in Al-Mg-Si 

alloys by atom probe tomography I. Microstructural changes as a function of ageing 

temperature, Acta Materialia 101 (2015) 136-148. 

 


