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Abstract

The electrical conductivity of disordered alloys is calculated using the Korringa-Kohn-Rostoker–coherent

potential approximation (KKR–CPA) alloy theory in conjunction with the local approximation to density

functional theory and the Kubo-Greenwood equation. Relativistic and non-relativistic expressions for the

conductivity are derived. A technique for the evaluation of the Kubo-Greenwood equation for arbitrary

crystal symmetry using group theoretical methods is described. Explicit expressions for scattering and

current operators at complex energies below the real axis which occur in the evaluation of the Kubo-

Greenwood equation are given.

1 Introduction

Describing and calculating transport properties of metallic systems is a task of considerable complexity and

is much more challenging than the calculation of thermodynamic equilibrium observables. The reason for

this is that transport processes imply the usage of irreversible thermodynamics and therefore complicate the

treatment of such phenomena a lot (Doniach and Sondheimer 1974; Rickayzen 1980; Mahan 1981; Kubo,

Toda and Hashitsume 1985). In principle there are two methods for calculating transport properties of

metallic systems: either by solving a kinetic equation such as the semiclassical Boltzmann equation (Ziman

1967) or by applying linear-response theory (Kubo 1957). The former approach is limited to cases where

the mean free path of the electrons is large in comparison to the lattice spacing and therefore to cases of

weak or modest disorder. The latter approach has the advantage of being free of such limitations allowing

for a treatment of strongly disordered systems where the mean free path is very short. However, the

kinetic equations permit the treatment of non-linear response whereas by definition this is not possible in

the framework of linear-response theory. The two approaches lead to identical results in the limit of weak

scattering and weak external fields (Edwards 1958; Schotte 1978; Mahan 1987).
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The electrical resistivity of disordered alloys is one of the most impressive manifestations of disorder. At

zero temperature the resistivity of a pure metal or an ordered alloy vanishes, whereas disordered alloys have

resistivities which can be as high as 200 µΩ·cm in some cases. Because the electrical resistivity of normal

metals and alloys is a linear phenomenon — Ohm’s law is valid — linear-response theory is the adequate

tool for treating such systems.

The electronic structure of disordered alloys can be described very efficiently in the framework of a local

approximation to density functional theory and by means of the coherent-potential approximation (CPA)

which gives an accurate description of the disordered state (Ehrenreich and Schwartz 1976; Faulkner 1982;

Gonis 1992). In particular, applying the CPA in conjunction with the Korringa-Kohn-Rostoker (KKR)

band theory allows for a first-principles treatment of such alloys (Weinberger 1990; Gonis 1992). The

KKR–CPA yields a configuration-averaged Green function which can be used for linear-response transport

theory by inserting it into the Kubo-Greenwood equation (Kubo 1957; Greenwood 1958). Butler showed

how to perform the configurational average required in the evaluation of the Kubo-Greenwood equation

for disordered systems in the framework of the KKR–CPA (Butler 1985) by following the ideas of Velický

(1969). Applications of the formalism to various alloy systems demonstrated that this theory allows for a

parameter-free first-principles treatment of transport quantities and yields numerical results which are in

good agreement with experimental findings (Swihart, Butler, Stocks, Nicholson and Ward 1986; Brown,

Allen, Nicholson and Butler 1989; Banhart, Ebert and Weinberger 1994; Banhart and Ebert 1995). Quite

recently the Kubo-Greenwood formalism has been extended to deal with layered systems such as magnetic

multilayer systems which show the GMR effect (Weinberger, Levy, Banhart, Szunyogh and Újfalussy 1996).

It is the purpose of the present and a following paper (Banhart 1997) to carry on the existing work on the

application of the Kubo-Greenwood equation to disordered alloys. Relativistic and non-relativistic versions

of the theory are presented. For this, expressions for the current operators corresponding to these two

cases are derived. An efficient way for the calculation of Brillouin zone averages of products of scattering-

path operators using the symmetry properties of the lattice is presented and the matrix structure of such

averages discussed. Moreover, simple expressions for the various scattering quantities in the regime of

complex energies with negative imaginary parts are given.

2 Kubo-Greenwood equation

Linear-response theory provides very general expressions for transport coefficients which are exact in the

limit of weak external fields. The frequency dependent electrical conductivity tensor σ(ω), e.g., can be
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written as (Kubo 1957):

σµν(ω) =
1

V

∞∫

0

dt e−iωt

β=1/kT∫

0

dλ
〈

Jν(−ih̄λ) Jµ(t)
〉

, (1)

where V is the volume of the system, and J is the current operator in the unperturbed Heisenberg picture.

〈. . .〉 denotes a thermodynamical average. This expression, although very general and exact, is not suitable

for practical calculations. However, by making some additional assumptions one can derive an equation

which is more useful. In particular one assumes a one-electron picture of the electronic system, considers

merely elastic scattering by static impurities and neglects the motion of the ions. The diagonal components of

the electrical conductivity tensor of a disordered metallic conductor at zero temperature, i.e., with disorder

originating from the atomic arrangement only, can then be written as (Greenwood 1958; Chester and

Thellung 1959; Kubo 1959; Verboven 1960; Economou 1983):

σµµ =
πh̄

V

〈

Tr
(

δ(ǫ − H) Jµ δ(ǫ − H) Jµ
)
〉

conf.

, µ ∈ {x, y, z}. (2)

This is one form of the Kubo-Greenwood equation. By using the Green function G of the system which is

given by (Economou 1983):

δ(ǫ − H) = − 1

π
ImG

+(ǫ), (3)

one obtains an alternative form:

σµµ =
h̄

πV

〈

Tr
(

Jµ ImG+(ǫ) Jµ ImG+(ǫ)
)
〉

conf.

(4)

where Jµ denotes the current operator in the µ-th spatial direction. The average has to be taken over all

possible configurations of the disordered system in both cases.

If one introduces the concepts of multiple-scattering theory, one rather uses Green functions than wave

functions to describe the electronic structure. The formulation of the KKR–CPA is based on the so-called

scattering-path operator τ , which is related to the one-particle Green function by (Faulkner and Stocks

1980):

G(~r, ~r′, ǫ) =
2me

h̄2

∑

Q,Q′

[

Zm
Q (~rm, ǫ)τmn

QQ′(ǫ)Z
†n
Q′ (~r′n, ǫ) (5)

−
(

Zm
Q (~rm, ǫ)Z†n

i,Q′(~r′n, ǫ)θ(r′ − r) + Zm
i,Q(~rm, ǫ)Z†n

Q′ (~r′n, ǫ)θ(r − r′)
)

δmnδQQ′

]

,
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where ~r = ~Rm +~rm, ~r′ = ~Rn + ~r′n and Z and Zi are regular and irregular solutions of the radial Schrödinger

or Dirac equation, respectively. θ(r) is the usual step function. The angular momentum indices Q may either

denote a non-relativistic (e.g. the (ℓ,mℓ)-representation) or a relativistic representation such as the Λ- or

γ-representation (Onodera and Okazaki 1966). The Green function is a 4×4 matrix in the relativistic case,

a scalar otherwise. As the scattering-path operator contains the same information as the Green function or

the wave function, the Kubo-Greenwood equation can be rewritten in terms of this operator yielding:

σµµ(ǫ) = − m2
e

πh̄3V

∑

z1,z2

sz1,z2

∑

mn

∑

Q1,Q2
Q3,Q4

〈

Jmµ
Q4Q1

(z2, z1)τ
mn
Q1Q2

(z1)J
nµ
Q2Q3

(z1, z2)τ
nm
Q3Q4

(z2)
〉

conf.
, (6)

where sz1,z2
= (2δz1,z2

−1) and z1, z2 are the two side limits of the complex energies defined by z1,2 = ǫ± iη,

with η → 0. The decomposition of Eq. 4 into four terms avoids the explicit occurrence of expressions of the

type ”Im(G)”. Jmµ are the matrix elements of the current operator with respect to the functions Zm in cell

m. Expressions for these matrix elements shall be derived in the next section. Eq. 6 is the starting point

for the formulation of the Kubo-Greenwood equation in the framework of the KKR–CPA. Butler showed

how to perform the explicit configuration average in Eq. 6 analytically and obtained an expression for the

electrical conductivity tensor in terms of KKR-like quantities (Butler 1985):

σµµ = − m2
e

πh̄3Ω

∑

z1,z2

sz1,z2

( ∑

α,β

cαcβJ̃αµ(z2, z1)
{

1 − χCPA(z1, z2)ω(z1, z2)
}−1

︸ ︷︷ ︸

VC

χCPA(z1, z2)J̃
βµ(z1, z2)

+
∑

α

cα J̃αµ(z2, z1) τCPA(z1) Jαµ(z1, z2) τCPA(z2)
)

. (7)

where Ω is the volume of the unit cell. In Eq. 7 angular momentum indices have been omitted for the sake

of simplicity. The matrix quantities are to be multiplied in a straightforward way. The scattering operators

occurring in this equation are averaged with respect to the CPA medium: the scattering path operator

τCPA is related to the CPA-t-matrix (coherent single-site t-matrix) and the structure constants G0(~k) by a

Brillouin zone integral:

τCPA(z) =
1

ΩBZ

∫

BZ

τ(~k, z)d3k (8)

with

τ(~k, z) =

[(

tCPA(z)
)−1

− G0(~k, z)

]−1

(9)
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and χCPA is essentially the Brillouin zone average of a pair of operators τ(~k, z) defined in Eq. 9:

χCPA(z1, z2) =
1

ΩBZ

∫

BZ

τ(~k, z1)τ(~k, z2)d
3k − τCPA(z1)τ

CPA(z2). (10)

J̃α in Eq. (7) is related to the current operator by J̃α = DαtJαDα, where Dα is the CPA impurity operator

with respect to the component α and Dαt is the corresponding transposed operator (Faulkner and Stocks

1980).

The quantity ω in Eq. 7 contains the CPA single-site t-matrix tCPA and the CPA scattering-path operator

τCPA. Using an auxiliary quantity xα defined as:

xα(z) =
[

1 − ∆mα(z)τCPA(z)
]

∆mα(z), (11)

with ∆mα = (tCPA)−1 − (tα)−1, ω(z1, z2) is given by:

ω(z1, z2) =
∑

α

cαxα(z1)x
α(z2). (12)

Eq. 7 includes all contributions to the electrical conductivity. If one approximates the right hand side of

Eq. 12 by the product of the average:

(
∑

α

cαxα(z1)

)(
∑

α

cαxα(z2)

)

, (13)

ω = 0, because the CPA condition implies that each term in round brackets in Eq. 13 vanishes. In Eq. 7 this

approximation leads to a considerable simplification because the term marked ”VC” then reduces to a unity

matrix. This simplification corresponds to a suppression of vertex corrections to the electrical conductivity.

One can assess the importance of these corrections by simply calculating the conductivity with and without

this simplification.

Without vertex corrections the Kubo-Greenwood equation simplifies considerably:

σµµ(ǫ) = − m2
e

πh̄3Ω

{

1

ΩBZ

∫

BZ

d3k







∑

αβ
z1,z2

cαcβsz1,z2
J̃αµ(z2, z1)τ(~k, z1)J̃

βµ(z1, z2)τ(~k, z2)







+
∑

αβ
z1,z2

cαcβsz1,z2
J̃αµ(z2, z1) τCPA(z1)

(

Jαµ(z1, z2) − J̃βµ(z1, z2)
)

τCPA(z2)

}

. (14)

and now merely contains an integral over 3 scalar quantities instead an integral over the much larger matrix

in Eq. 10.
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An evaluation of Eqs. 7 or 14 is possible once the KKR–CPA equations have been solved and the scattering-

path operator τCPA has been determined. What remains to be done is to calculate the current operators

in the corresponding relativistic or non-relativistic representation and, for Eq. 7, to calculate the Brillouin

zone average of a product of two inverse KKR–matrices τ(~k, z) in an efficient way.

3 Current operators

In this section explicit expressions for the non-relativistic and the relativistic current matrix elements and the

relation between the current operators Jx, Jy and Jz are derived. Moreover, the non-relativistic operators

are related to the relativistic ones.

3.1 Non-relativistic expression

In the framework of non-relativistic theory the current operator is given by

~j =
e

me
~p = − ieh̄

me

~∇ (15)

and the matrix elements needed for the evaluation of the Kubo-Greenwood equation are:

Jαµ
LL′(z1, z2) = − ieh̄

me

∫

WS

d3rZα∗
L (~r, z1)

∂

∂rµ
Zα

L′(~r, z2), (16)

where the indices L = (ℓ, mℓ) denote an angular momentum representation based on complex spherical

harmonics:

Zα
L(~r, z) = Rα

ℓ (r, z)Y mℓ

ℓ (ϑ, ϕ). (17)

The integral over the Wigner-Seitz cell can be replaced by an integral over the entire space by using a shape

function for the Wigner-Seitz cell and by substituting

R̂α
ℓ (r) = Rα

ℓ (r)ΘWS(~r ), where ΘWS(~r ) =







1 ~r ∈ WS

0 otherwise
(18)

for Rα
ℓ . For a spherical domain (e.g. a muffin tin sphere of radius rMT or a sphere corresponding to the

Wigner-Seitz sphere with radius rWS) ΘWS(~r ) = Θ(rMT − r) or ΘWS(~r ) = Θ(rWS − r), respectively. Using

this expression and applying the gradient formula (Rose 1957) for spherical harmonics the derivative in Eq.

16 can be written as:
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∂

∂rµ

[

R̂α
ℓ′(r)Y

mℓ′

ℓ′

]

=



−
√

ℓ′ + 1

2ℓ′ + 1

(

∂

∂r
R̂α

ℓ′(r) − ℓ′
R̂α

ℓ′(r)

r

)

1∑

k=−1

C(ℓ′ + 1, 1, ℓ′, mℓ′ − k, k, mℓ′)Y
mℓ′−k
ℓ′+1 (~ξk)µ

+

√

ℓ′

2ℓ′ + 1

(

∂

∂r
R̂α

ℓ′(r) + (ℓ′ + 1)
R̂α

ℓ′(r)

r

)

1∑

k=−1

C(ℓ′ − 1, 1, ℓ′, mℓ′ − k, k, mℓ′)Y
mℓ′−k
ℓ′−1 (~ξk)µ



 . (19)

The vectors ~ξ are given by:

~ξ1 = − 1√
2
(1, i, 0) ~ξ0 = (0, 0, 1) ~ξ−1 =

1√
2
(1,−i, 0) (20)

and C are the usual Clebsch-Gordan coefficients C(l, s, j, ml, ms, mj).

Inserting this expression into Eq. 16 and exploiting the orthogonality of the spherical harmonics Y ml

l yields

a closed expression for the current matrix elements corresponding to a spherical integration domain (e.g. a

muffin tin sphere, MT):

Jαµ,MT
LL′ = − ih̄

me





−
√

ℓ′+1

2ℓ′+1





rMT∫

0

r2drRα
ℓ (r)

[
∂

∂r
Rα

ℓ′(r) −
ℓ′

r
Rα

ℓ (r)Rα
ℓ′(r)

]

− Rα
ℓ (rMT)Rα

ℓ′(rMT)r2
MT

2





×
1∑

k=−1

C(ℓ′ + 1, 1, ℓ′, ml′ − k, k, ml′)δℓ,ℓ′+1δml,ml−k(~ξk)µ +

+

√
ℓ′

2ℓ′+1





rMT∫

0

r2drRα
ℓ (r)

[
∂

∂r
Rα

ℓ′(r) +
ℓ′+1

r
Rα

ℓ (r)Rα
ℓ′(r)

]

− Rα
ℓ (rMT)Rα

ℓ′(rMT)r2
MT

2





×
1∑

k=−1

C(ℓ′ − 1, 1, ℓ′, ml′ − k, k, ml′)δℓ,ℓ′−1δml,ml′−k(~ξk)µ






.

(21)

The matrix structure of Jx and Jz is given in Tab. 1 and 2, respectively. Because the current matrices are

not independent of each other, only one such matrix has to be calculated. The other components can then

be obtained by exploiting the commutation relations [Lz, Jx] = ih̄Jy and [Lx, Jy] = ih̄Jz:
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Jy
LL′ = −i(mℓ − mℓ′)J

x
LL′ (22)

and

Jz
LL′ =

1

2i

∑

L′′

[

(√

ℓ′′(ℓ′′+1) − mℓ′′(mℓ′′+1)δmℓ,mℓ′′+1 +
√

ℓ′′(ℓ′′+1) − mℓ′′(mℓ′′−1)δmℓ,mℓ′′−1

)

δℓ,ℓ′′J
y
L′′L′

−
(√

ℓ′(ℓ′+1) − mℓ′(mℓ′+1)δmℓ′′ ,mℓ′+1 +
√

ℓ′(ℓ′+1) − mℓ′(mℓ′−1)δmℓ′′ ,mℓ′−1

)

δℓ′′,ℓ′J
y
LL′′

]

(23)

If the domain of integration in Eq. 16 is not a sphere, the integration in Eq. 21 can be carried out using a

set of special directions. In this case the symmetry is lower and extra matrix elements occur in the current

matrix. In Tabs. 1 and 2 these elements are marked by lower case letters for the case of cubic symmetry of

the domain.

3.2 Relativistic expression

The relativistic current operator is defined in terms of the relativistic velocity operator:

~j = e~v = ec~α, (24)

where ~α are the Dirac matrices (Rose 1961). The matrix elements needed for the evaluation of the Kubo-

Greenwood equation are:

Jαµ
ΛΛ′(z1, z2) = ec

∫

WS

d3r Z†α
Λ (~r, z1) αµ Zα

Λ′(~r, z2) (25)

where Λ = (κ, mj) denotes a representation in terms of spin-angular functions (Rose 1961). In this repre-

sentation the scattering solutions Z are of the form:

Zα
Λ(~r, z) =






gα
κ (r, z)χ

mj
κ

ifα
κ (r, z)χ

mj

−κ




 (26)

and

Z†α
Λ (~r, z) =

(

gα
κ (r, z)χ

†mj
κ , − ifα

κ (r, z)χ
†mj

−κ

)

. (27)
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The Dirac matrices are defined in terms of the Pauli matrices:

αµ =






0 σµ

σµ 0




 . (28)

Because the matrices σ merely act on χ and not on the radial functions the current matrices can be written

as:

Jαµ
ΛΛ′ = eci

∫

WS

d3r
(

gα
κ (r)fα

κ′(r)χ
†mj
κ σµχ

mj′

−κ′ − fα
κ (r)gα

κ′(r)χ
†mj

−κ σµχ
mj′

κ′

)

. (29)

If the integration volume refers to spherical symmetry this result can be further simplified to

Jαµ,MT
ΛΛ′ = eci

(

Rα
κ,κ′W

µ,mj ,mj′

κ,−κ′ − Rα
κ′,κW

µ,mj ,mj′

−κ,κ′

)

, (30)

where

Rα
κκ′ =

rMT∫

0

r2dr gα
κ (r)fα

κ′(r) (31)

and

W
µ,mj ,mj′

κκ′ =

∫

dΩ χ
†,mj
κ σµχ

mj′

κ′ . (32)

Because, as in the non-relativistic case, the current operators depend on each other, calculation of e.g. the

x-component is sufficient:

W
x,mjmj′

κκ′ = δℓ,ℓ′
∑

ms

C(ℓ,
1

2
, j, mj − ms, ms, mj)C(ℓ′,

1

2
, j′, mj′ + ms,−ms, mj′) δmj ,mj′+2ms . (33)

The structure of the current matrices Jx and Jz is shown in Tabs. 3 and 4, respectively. For integration

volumes with lower than spherical symmetry extra matrix elements occur indicated by lower case letters in

Tabs. 3 and 4 for cubic symmetry.

As in the case of the non-relativistic current matrix elements the various spatial components are related to

each other. Using the commutation relations between J and L one obtains:

Jy
ΛΛ′ = −i(mj − mj′)J

x
ΛΛ′ (34)
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and

Jz
ΛΛ′ =

1

2i

∑

Λ′′

∑

ms

[

C(ℓ,
1

2
, j, mℓ, ms, mj)C(ℓ′′,

1

2
, j′′, m′′

ℓ , ms, m
′′
j ) × (35)

(√

ℓ′′(ℓ′′ + 1) − m′′
ℓ (m

′′
ℓ + 1)δmℓ,m

′′

ℓ
+1 +

√

ℓ′′(ℓ′′ + 1) − m′′
ℓ (m

′′
ℓ − 1)δmℓ,m

′′

ℓ
−1

)

δℓ,ℓ′′J
y
Λ′′Λ′

−C(ℓ′′,
1

2
, j′′, m′′

ℓ , ms, m
′′
j )C(ℓ′,

1

2
, j′, m′

ℓ, ms, m
′
j) ×

(√

ℓ′(ℓ′ + 1) − m′
ℓ(m

′
ℓ + 1)δm′′

ℓ
,mℓ′+1 +

√

ℓ′(ℓ′ + 1) − m′
ℓ(m

′
ℓ − 1)δm′′

ℓ
,m′

ℓ
−1

)

δℓ′′,ℓ′J
y
ΛΛ′′

]

3.3 Relation between non-relativistic and relativistic current operators

The relativistic current operator can be expanded yielding the non-relativistic expression as a leading term

plus corrections in the order of 1/c2 (Wang and Callaway 1973) and higher ones:

~j =
e

me

[

−ih̄~∇ +
h̄

4mec2
~σ × ~∇V (~r) + . . .

]

= ~j(0) +~j(1) + . . . , (36)

where V ist the potential of the system and ~σ is the Dirac spin operator.

To allow for a direct comparison of non-relativistic (~j(0)) and relativistic (~j) current operators, one has to

calculate the nonrelativistic current operator in the relativistic representation. The evaluation is analogous

to that of Eq. 21. The result for the matrix elements Jαµ,MT
ΛΛ′ is similar to Eq. 21 except that it contains

extra Clebsch-Gordan coefficients and two contributions corresponding to the g and the f component of the

Dirac four-spinor. No mixed terms occur as they do in Eq. 31. The operators −ieh̄/me
~∇ and ec~α can then

be directly compared.

The first correction term in Eq. 36 can also be calculated in a fairly simple way. Due to the cross product

one has to calculate two terms of the form

σµ
∂V (~r)

∂rν
(37)

for each component of ~σ × ~∇V . The expression ∂V/∂rν can be transformed to spherical coordinates and

expressed in terms of complex spherical harmonics:

∂V (~r)

∂rν
=

∂V (~r)

∂r
×







sinϑ cos ϕ

sinϑ sinϕ

cos ϑ

=
∂V (~r)

∂r
×







√
2π
3 (Y −1

1 − Y 1
1 ), ν = x

i
√

2π
3 (Y −1

1 + Y 1
1 ), ν = y

√
4π
3 Y 0

1 , ν = z

(38)
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Using the scattering solutions of Eqs. 26 and 27 one can then write:

∫

MT

d3rZ†α
Λ (~r, z1)

[

σµ
∂V (~r)

∂rν

]

Zα
Λ′(~r, z2) =

√

4π

3

rMT∫

0

r2drgκ(r)αgα
κ′(r)

∂V (~r)

∂r

×
∑

ms,ms′

C(ℓ,
1

2
, j, mℓ, ms, mj)C(ℓ′,

1

2
, j′, m′

ℓ, m
′
s, m

′
j)

× σms,m′

s







1
2(G(1,−1)

L,L′ − G(1,1)
L,L′ ), ν = x

i
2(G(1,−1)

L,L′ + G(1,1)
L,L′ ), ν = y

G(1,0)
L,L′ , ν = z

+ corresponding f contribution (39)

Here σms,m′

s
denote the matrix elements of the ordinary 2×2 Pauli matrices. The triple products of spherical

harmonics occuring in Eq. 39 have been represented by Gaunt coefficients G defined as:

GL′′

L,L′ =

∫

dΩ
(
Y mℓ

ℓ

)∗
Y

m′

ℓ

ℓ′ Y
m′′

ℓ

ℓ′′ (40)

There are six contributions which have to be calculated using Eq. 39 and put together to yield the first

correction ~j(1) to the non-relativistic current operator ~j(0).

4 Brillouin zone average of two inverse KKR matrices

Solving the KKR–CPA equations requires an integration of the inverse KKR-matrix τ(~k, z) over the Brillouin

zone in order to obtain the CPA scattering-path operator τCPA (Eq. 8). In practice this means that each

of the matrix elements τQQ′(~k, z) has to be integrated separately. This task is simplified if one takes into

account that many of these matrix elements vanish or are related to each other due to symmetry. Solving

Eq. 10 means integration of each element τQQ′(~k, z1)τQ′′Q′′′(~k, z2) over the Brillouin zone. For a relativistic

representation and ℓmax = 3, e.g., there are 324 such elements to integrate. Therefore, it is essential to

know the matrix structure of χCPA in order to be able to compute χCPA efficiently. Moreover, in most cases

an integration over the entire Brillouin zone is not necessary but can be reduced to the irreducible part

(IBZ) by making use of the rotation group P corresponding to the underlying crystal structure. For cubic

symmetry, e.g., there are 48 such point group symmetry operations and the Brillouin zone integrals can be

reduced to integrals over one 1/48-th of the zone. The general expression is given by:

τCPA
QQ′ (z) =

1

ΩBZ

∫

IBZ

d3k
∑

R∈P

∑

Q1Q2

DQQ1
(R)τQ1Q2

(~k, z)D†
Q2Q′(R) (41)

11



χCPA
QQ′Q′′Q′′′(z1, z2) =

1

ΩBZ

∫

IBZ

d3k
∑

R∈P

∑

Q1Q2
Q3Q4

DQQ1
(R)τQ1Q2

(~k, z)D†
Q2Q′(R)DQ′′Q3

(R)τQ3Q4
(~k, z)D†

Q4Q′′′(R) (42)

where the matrices D(R) contain blockwise the Clebsch-Gordan coefficients of the irreducible representation

of R ∈ P. P refers to the point group of order |P|. Regrouping the matrix elements one obtains:

τCPA
QQ′ (z) =

1

ΩBZ

∫

IBZ

d3k
∑

Q1Q2

S
(Q1Q2)
QQ′ τQ1Q2

(~k, z) (43)

with

S
(Q1Q2)
QQ′ =

∑

R∈P

DQQ1
(R)D†

Q2Q′(R) (44)

and

χCPA
QQ′Q′′Q′′′(z1, z2) =

1

ΩBZ

∫

IBZ

d3k
∑

Q1Q2
Q3Q4

R
(Q1,Q2,Q3,Q4)
QQ′Q′′Q′′′ τQ1Q2

(~k, z1)τQ3Q4
(~k, z2) (45)

with

R
(Q1,Q2,Q3,Q4)
QQ′Q′′Q′′′ =

∑

R∈P

DQQ1
(R)D†

Q2Q′(R)DQ′′Q3
(R)D†

Q4Q′′′(R) (46)

Fortunately, many of the coefficients S and R vanish. If, e.g., for a given pair (QQ′) all S
(QQ′)
Q1Q2

vanish, the

corresponding matrix element τCPA
QQ′ is zero. Identical elements of τ can be found in the following way: one

chooses two elements τQQ′ and τPP ′ . Then one compares the two matrices S
(Q1Q2)
QQ′ and S

(P1P2)
PP ′ element by

element. If the matrices are identical the two elements of τ are identical. For χ the same can be done with

the only difference that matrices with four indices have to be compared.

The matrix structure of τCPA and χCPA was analyzed in this way for cubic crystal symmetry. For τCPA one

recovers the well known matrix structure (Staunton et al. 1980; Weinberger 1990). Tab. 5 shows, how many

numerically different values the matrices τCPA and χCPA contain (not counting the zero value). As one can

see, the number is comparatively small. In a calculation of χCPA one can therefore restrict the evaluation

and integration of the integrand τQ1Q2
(~k, z1)τQ3Q4

(~k, z2) to the set of indices identified this way. The indices

have to be only calculated once and can be kept in tabulated form.

Note that the number of different elements for ℓmax = 2 in the non-relativistic representation given in Tab.

5 (40) differs from a value (114) given by Swihart et al. (1986).
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5 Complex energies

The evaluation of Eq. 6 requires the determination of operators for complex energies which lie above and

below the real axis. In normal electronic structure calculations, however, only energies ǫ+ iη with a positive

imaginary part are usually encountered so that care has to be taken when energies ǫ − iη are involved as

it is the case in conductivity calculations. For η → 0 there are fairly simple relations between the various

quantities A(ǫ + iη) and A(ǫ− iη) used in the calculation, where A is any of the operators of interest in the

current context. These relations shall be derived now.

Because one is mostly dealing with energies which lie in the continuous spectrum of the alloy hamiltonian,

one has to choose a path from ǫ + iη to ǫ− iη which avoids the discontinuous branch cut along the real axis

(Economou 1983). A possible path describing an angle of 2π is shown in Fig. 1. One can write:

ǫ − iη = e2πi
︸︷︷︸

1

(ǫ + iη) for η → 0. (47)

5.1 Wave vector

On the energy shell k2 = ǫ (in atomic units which are used throughout this section). Denoting for a moment

kz =
√

z, z = ǫ ± η, on can write

kǫ−iη =
√

ǫ − iη =
√

e2πi
√

ǫ + iη = eπi
√

ǫ + iη = −
√

ǫ + iη = −kǫ+iη. (48)

5.2 Phase shifts

The scattering behaviour of a spherically symmetrical scatterer can be charactersised by its phase shifts.

These shifts can be written as (Weinberger 1990):

cot δℓ =
γℓnℓ(kr) − kn′

ℓ(kr)

γℓjℓ(kr) − kj′ℓ(kr)
, (49)

where γ = R′/R is the logarithmic derivative at the sphere boundary. The Bessel- and Neumann functions

and their derivatives satisfy the following parity relations (Abramowitz and Stegun 1964):

jℓ(−kr) = (−1)ℓjℓ(kr) nℓ(−kr) = (−1)ℓ+1nℓ(kr)

j′ℓ(−kr) = (−1)ℓ+1j′ℓ(kr) n′
ℓ(−kr) = (−1)ℓn′

ℓ(kr).
(50)

This yields:
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cot [δℓ(ǫ + iη)] = − cot [δℓ(ǫ − iη)] . (51)

The same relation holds for the relativistic phase shifts.

5.3 t-matrix and scattering amplitude

The single-site t-matrix t and the scattering amplitude f can be expressed in terms of the phase shift:

tQQ′(ǫ + iη) = −1

k
eiδQ(ǫ+iη) sin [δQ(ǫ + iη)]
︸ ︷︷ ︸

fQ

δQQ′ . (52)

Using Eq. 48 one obtains:

fQ(ǫ − iη) = −f∗
Q(ǫ + iη)

tQQ′(ǫ − iη) = t∗QQ′(ǫ + iη) (53)

5.4 Wave functions and current matrix elements

The solution of the wave equation in a constant potential can be written as (Weinberger 1990):

Zfree
Λ (ǫ + iη, r) =







k (nℓ(kr) − cot δκjℓ(kr)) χ
mj
κ

isgn(κ)k2

c (nℓ̄(kr) − cot δκjℓ̄(kr)) χ
mj

−κ

, (54)

when the Dirac equation is used. Using Eqs. 48-51 one obtains:

Zfree
Λ (ǫ − iη, r) = (−1)ℓZfree

Λ (ǫ + iη, r). (55)

As the wave functions in the muffin tin sphere are continuously matched to the free functions at the muffin

tin sphere, Eq. 55 also applies to the wave function in the entire Wigner-Seitz cell. For the current matrix

elements one then easily obtains the following relations:

Jαµ
QQ′(ǫ − iη, ǫ − iη) = (−1)l+l′Jαµ

QQ′(ǫ + iη, ǫ + iη)

Jαµ
QQ′(ǫ − iη, ǫ + iη) = (−1)lJαµ

QQ′(ǫ + iη, ǫ + iη)

Jαµ
QQ′(ǫ + iη, ǫ − iη) = (−1)l′Jαµ

QQ′(ǫ + iη, ǫ + iη), (56)
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5.5 k-space structure constants and scattering operators

The k-space structure constants for energies with negative imaginary part z = ǫ − iη can now be derived

from the usual structure constants for z = ǫ+ iη by substituting each k =
√

ǫ occurring in the corresponding

expression for G0 by −k. One can use an expression for G0 given by Davis (1971), where a trivial diagonal

part is separated off the actual structure constants B:

G0
QQ′(~k, ǫ + iη) = BQQ′(~k, ǫ + iη) + i

√
ǫ δQQ′ , (57)

An evaluation of these structure constants B yields:

G0
QQ′(~k, ǫ − iη) = (−1)l−l′BQQ′(~k, ǫ + iη) − i

√
ǫ δQQ′ . (58)

For τ(~k, ǫ) given by Eq. 9 a very similar expression can be derived:

τQQ′(~k, ǫ − iη) = (−1)l−l′
(

τQ′Q(~k, ǫ + iη)
)∗

. (59)

If one integrates τ(~k, ǫ) over the Brillouin zone, all matrix elements with ∆ℓ 6= 2n vanish and the resulting

integrated matrix is symmetric thus yielding:

τCPA
QQ′ (ǫ − iη) = τCPA

QQ′ (ǫ + iη)∗. (60)

6 Summary

The details of the application of the Kubo-Greenwood equation for the electrical conductivity to disordered

alloys in the framework of the Korringa-Kohn-Rostoker version of the coherent potential approximation

(KKR–CPA) are given. Both a non-relativistic and a relativistic version of the formalism has been worked

out. Explicit expressions for the current matrix elements are given in both versions and for the first correction

term to the non-relativistic current operator. The relations between operators at complex energies just above

and below the real axis are derived. Moreover, it is shown how one can use symmetry considerations to

facilitate the tedious calculation of the Brillouin zone average of two inverse KKR matrices needed for the

evaluation of the Kubo-Greenwood equation.
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Tables

ℓ s p d f

ml 0 -1 0 1 -2 -1 0 1 2 -3 -2 -1 0 1 2 3

1 A -A a b -b a

2 -A B C c

3 D -D

4 A -c -C -B

5 -B c E F d e

6 -D G H f

7 -C C g I -I -g

8 D -f -H -G

9 -c B -e -d -F -E

10 -a -E -g e

11 -G f

12 -b -F -I d

13 -H H

14 b -d I F

15 -f G

16 -a -e g E

Table 1: Structure of the non-relativistic current matrix Jx for angular momenta up to ℓ = 3. Capital letters:

components corresponding to a spherical integration domain, lower case letters: additional components

arising from a Wigner-Seitz cell with cubic symmetry. The matrix is hermitean and all components are

purely imaginary. The selection rules are ∆ℓ = ±1, ∆mℓ = ±1 (spherical symmetry) and ∆ℓ = ±1, 3 . . .,

∆mℓ = ±1, 3 . . . (cubic symmetry).
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ℓ s p d f

ml 0 -1 0 1 -2 -1 0 1 2 -3 -2 -1 0 1 2 3

1 A a

2 B

3 -A C

4 B

5 D b

6 -B E c

7 -C F

8 -B c E

9 b D

10 -c

11 -D -b

12 -E

13 -a -F

14 -E

15 -b -D

16 -c

Table 2: Structure of the non-relativistic current matrix Jz for angular momenta up to ℓ = 3. Capital letters:

components corresponding to a spherical integration domain, lower case letters: additional components

arising from a Wigner-Seitz cell with cubic symmetry. The matrix is hermitean and all components are

purely imaginary. The selection rules are ∆ℓ = ±1, ∆mℓ = 0 (spherical symmetry) and ∆ℓ = ±1, 3 . . .,

∆mℓ = 0,±4 . . . (cubic symmetry).
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ℓj → s1/2 p1/2 p3/2 d3/2 d5/2

mj → + 1

2
− 1

2
+ 1

2
− 1

2
+ 3

2
+ 1

2
− 1

2
− 3

2
+ 3

2
+ 1

2
− 1

2
− 3

2
+ 5

2
+ 3

2
+ 1

2
− 1

2
− 3

2
− 5

2

1 A B C

2 A -C -B

3 -A D E a b c

4 -A -E -D c b a

5 -B F d G H e

6 C F K L M f

7 -C K F -f -M -L

8 -B d F -e -H -G

9 -D -F -d

10 E -F -K

11 -E -K -F

12 D -d -F

13 -c -G f

14 -a -L e

15 -b -H M

16 -b -M H

17 -a -e L

18 -c -f G

Table 3: Structure of the relativistic current matrix elements Jx for angular momenta up to ℓ = 2. Capital

letters: components corresponding to a spherical domain, lower case letters: additional components arising

from a Wigner-Seitz cell with cubic symmetry. The matrix is hermitean and all components are purely

imaginary. The selection rules are ∆ℓ = ±1 and ∆mj = ±1 for spherical symmetry, ∆ℓ = ±1, 3 . . . and

∆mj = ±1, 3 . . . for cubic symmetry).
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ℓj s1/2 p1/2 p3/2 d3/2 d5/2

mj + 1

2
− 1

2
+ 1

2
− 1

2
+ 3

2
+ 1

2
− 1

2
− 3

2
+ 3

2
+ 1

2
− 1

2
− 3

2
+ 5

2
+ 3

2
+ 1

2
− 1

2
− 3

2
− 5

2

1 A B

2 -A B

3 -A C a

4 A C -a

5 D E b

6 -B F G

7 -B -F G

8 -D b E

9 -D

10 -C -F

11 -C F

12 D

13 -b

14 -E

15 -a -G

16 a -G

17 -E

18 -b

Table 4: Structure of the relativistic current matrix elements Jz for angular momenta up to ℓ = 2. Capital

letters: components corresponding to a spherical domain, lower case letters: additional components arising

from a Wigner-Seitz cell with cubic symmetry. The matrix is hermitean and all components are purely

imaginary. The selection rules are ∆ℓ = ±1 and ∆mj = 0 for spherical symmetry, ∆ℓ = ±1, 3 . . . and

∆mj = 0,±4 . . . for cubic symmetry).
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non-relativistic relativistic

(ℓ, mℓ) representation γ representation Λ representation (ℓ, mℓ, ms) representation

ℓmax τCPA χCPA τCPA χCPA τCPA χCPA τCPA χCPA

1 2 2 3 24 3 24 5 28

2 4 40 7 648 11 686 14 702

3 13 512 17 5334 not det.

Table 5: Number of numerically different elements of the CPA-scattering-path operator τ and the Brillouin-

zone averaged product χCPA. For χ only elements with ∆ℓ = ±1 have been taken into account. Elements with

different signs are considered identical. Non-relativistic representation: (ℓ,mℓ)-representation (real spherical

harmonics), relativistic representations: Λ-, γ-, and (ℓ,mℓ,ms)-representation (see Staunton, Gyorffy and

Weinberger 1980 for definitions of the relativistic representations).
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Figure 1: Schematical representation of the spectrum of G(ǫ) showing a path from ǫ + iη to ǫ − iη (for

η → 0).
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