Deformation characteristics of metal foams J. Banhart, J. Baumeister

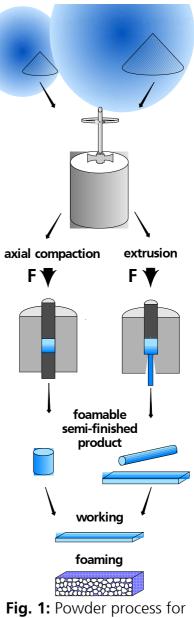
Fraunhofer-Institute for Applied Materials Research (IFAM) Wiener Straße 12, 28359 Bremen, Germany

Abstract

The deformation behaviour of a series of aluminium and zinc foams was investigated by uniaxial testing. Because the deformation behaviour of metal foams is expected to be anisotropic due to the existence of a closed outer skin and with respect to the foaming direction, a series of measurements was carried out where the orientation of the outer skin and the foaming direction were varied. Stress-strain diagrams and corresponding compression strengths were determined for aluminium- and zinc-based foams. The influence of an age-hardening heat treatment was investigated. Finally, the axial deformation behaviour of aluminium tubes filled with aluminium foam was tested under uniaxial loading conditions. The results of the measurements are discussed in the context of possible applications of metal foams as energy absorbers.

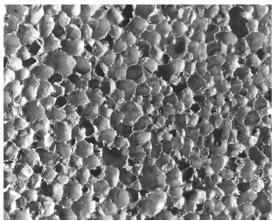
1. Introduction

In the past few years there has been a considerable increase in interest for metal foams especially made of aluminium or aluminium alloys. The reason for this are recent process developments which promise a better quality of the foamed material. Moreover, the conditions for the application of new materials have changed very much. Increased demands concerning passenger safety in automobiles or materials recycling make constructors now think of using metal foams where a few years ago the same material would have been ruled out for technical or economical reasons.


One reason for the fact that metal foams have not become very popular yet are the manufacturing processes which were available in the past. They were characterised by relatively high costs and a poor quality of the foamed material. In the last ten years there has been quite some improvement in this respect, so that nowadays various methods for making metal foams are available, some starting from the molten metal [1-3], others from metal powders [1,4-7]. In particular, a powder method for foaming metals was invented a few years ago at Fraunhofer-Institute. It allows for the production of foamed metals based on aluminium, zinc, tin, lead, and alloys thereof [1,4-7].

There are many possible applications for metal foams ranging from lightweight construction, sound and heat insulation to energy absorption applications. The latter makes use of the combination of high strength and the characteristic non-linear deformation behaviour, which originates from the cellular nature of metal foams. It is therefore an important task to characterise the deformation behaviour of metal foams to be able to assess the application opportunities. A general overview over the mechanical properties of foamed structures can be found in Ref. [8]. The compression of aluminium foams has been investigated by Thornton and Magee about 20 years ago [9,10] and recently by the present authors [11-13]. In this paper we carry on the existing characterisation of metal foam systems. Because in most real applications the bare metal

foam will not be used but some kind of composite structure is desired, we extend the work to very simple composites consisting of the foam and a closed outer hull. The hull may be the densified skin, which is created during foaming or a massive aluminium tube which is filled with aluminium foam in a special modification of the foaming process.


2. Sample preparation

Metal foam was produced by the powder metallurgical Fraunhofer-process. The process is described schematically in Fig. 1: aluminium and zinc alloys were prepared by mixing metal powders in the appropriate relations. The foaming agent titanium hydride or zirconium hydride was then added to this mixture. The foaming agent content depends on the metal to be foamed and the desired density and range from 0.4 to 0.8 weight percent in the present case. The mixture containing the agent was then compacted by extrusion (Al) or axial compaction (Zn). As a result a semi-finished product is obtained in which the foaming agent is homogeneously distributed within a dense, virtually non porous metallic matrix. This foamable material was processed into pieces of the desired size and shape by rolling and cutting. Finally, foamed metal parts were obtained by heating the material to temperatures above the melting point of the matrix metal. The metal melts and the foaming agent releases gas in a controlled way, so that the metal transforms into semi-solid, foamy mass which expands slowly. The foaming took place inside simple closed moulds which were then completely filled by the foam. After the mould had been filled, the process was stopped by simply allowing the mould to cool down to a temperature below the melting point of the metal. The density of the metal foams was controlled by adjusting the content of foaming agent and varying the heating conditions. The resulting foamed body has a closed outer skin. If the body is cut apart, the highly porous structure becomes evident (Fig. 2). The aluminium foams were made from a powder mixture of the nominal composition AlSi6Cu4, the zinc foams from ZnCu4 mixtures.

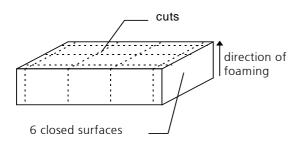
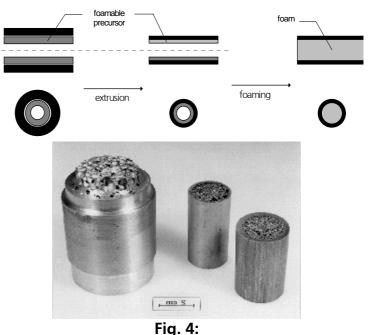


Fig. 1: Powder process for making metal foams [4-7]

For the compression testing of aluminium foams rectangular foamed blocks having the dimensions 130x100x40 mm³ were manufactured by filling an appropriate rectangular mould. The blocks were cut into 6 pieces, each of which had the dimensions 40x40x40 mm³ and densities ranging from 0.2 to 0.8 g/cm³ (see **Fig. 3**). Each sample then showed two faces with a closed outer skin and four faces which were open. The samples for the characterisation of zinc foams were foamed inside a cylindrical mould with a diameter

Fig. 2: Pore structure of an aluminium foam (area of photograph 60x50 mm)

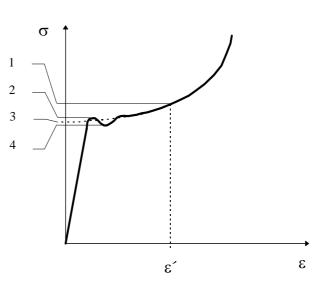

Fig. 3: Preparation of aluminium foam test samples from a foam block

mained solid while the foamable layer expanded towards the center of the tube until the tube was entirely filled with foam. This procedure was repeated for various tubes of different wall thicknesses and various thicknesses of the foamable layer leading to tubes filled with foam of different densities. Two examples of such tubes are shown in Fig. 4b. For the compression tests presented in this paper the wall thickness of the tube was 2.5 mm, the tube diameter 30 mm and the foam densities ranged from 0.45 to 0.6 g/cm³.

of 30 mm and 40 mm length. The resulting samples were also cylindrical and all faces and sides remained closed.

The aluminium foams were all heat treated after foaming in order to remove the arbitrary microstructural state originating from free, uncontrolled cooling after foaming and in order to maximise strength. The zinc foams, however, were tested in the state "as foamed".

Composite structures consisting of aluminium tubes and an aluminium foam filling were made the following way (**Fig. 4a**): Tubes of foamable AlSi6Cu4 alloy were inserted into conventional tubes made from a 6061 alloy. The tubes were co-extruded in a hydrostatic extrusion machine yielding a composite consisting of an outer tube which was coated by a layer of foamable material on the inner wall. The bonding between foamable layer and the outer tube was metallic due to the deformation during extrusion. The whole composite was then placed into a furnace. The temperature was controlled in a way that the outer tube re-



a) Process for making foam filled tubes b) Aluminium tubes (6061) filled with aluminium foam (AlSi6Cu4)

3. Mechanical testing of aluminium foams

3.1 Definitions

A number of metal foams having nominal compositions the AlSi6Cu4 and ZnCu4 were tested in guasistatical compression tests. All foams, whatever material they were made of, exhibited the universal deformation behaviour [8] which is shown in Fig. 5 in schematical form: for small compressions one observes an increase of stress which at first sight appears to be elastic. A more thorough analysis, however, revealed that the increase is only partially reversible and that certain irreversible deformation processes of the foamed structure occur during the first loading. Young's modulus can therefore not be determined by measuring the slope of the initial stress increase but has to be determined by other means such as by measurements of flexural vibrations [11]. Small scale plastic deformations are also responsible for the mechanical damping of metal foams which is about ten times

Fig. 5:

Schematical stress-strain diagram of a foam. The numbers denote the various compression strengths:

1: compression strength ###### at a given strain ϵ' ;

2: upper yield strength ###_u;

3: strength *###*_f extrapolated from the stressstrain curve in the plateau regime.

larger than the damping of the corresponding matrix metals [13].

After the initial increase of stress there is then a change to a regime of very strong plastic deformation characterised by a small slope of the stress-strain curve. In some cases the curve is even horizontal. Sometimes an upper and lower yield point is observed [9,10]. After an extended plateau regime the stress-strain curve gradually changes into the regime of densification when the cell walls touch each other, accompanied by a steep increase of stress. The form of the stress-strain curve shown in Fig. 5 varies with density, density gradients and composition of the metal foam but always shows the same principal behaviour.

For the characterisation of foams and the evaluation of their potential applications a determination of their compression behaviour, or, more specifically, their compression strength and the length and slope of the plateau is important. The definition of compression strength for foams, however, is not unambiguous. There are various possibilities to define this quantity. In Fig. 5 these possibilities are denoted by numbers: one can use the upper (2) or lower (4) yield points (###_u,###_l) as measure for the compression strength [9,10] or use an average. In case that no such yield points can be observed and

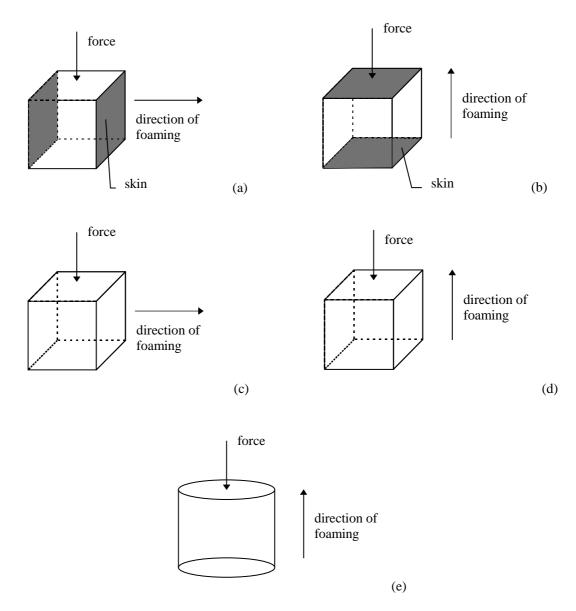
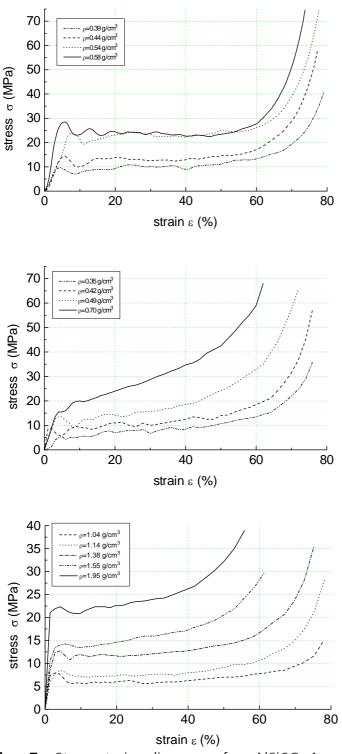
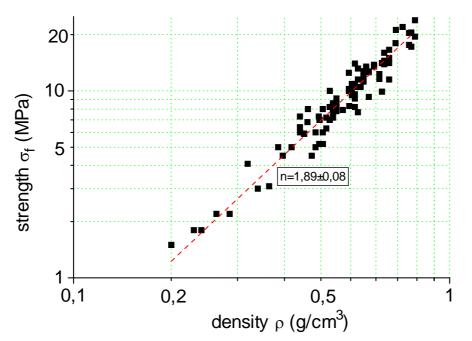



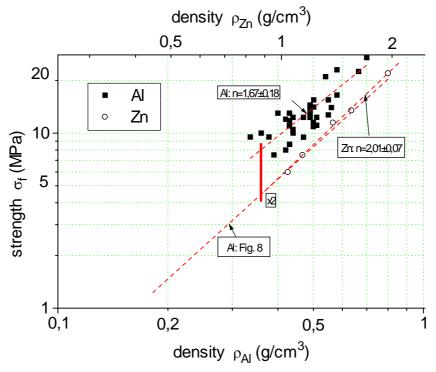
Fig. 6: Testing configurations used in the investigations

the stress-strain curve increases sufficiently smoothly, one can extrapolate the plateau regime to ###=0 and define a compression strength ###_f this way (3). Finally, one can simply take the stress at a certain given deformation, e.g. 10 or 20%, and use the corresponding deformation stresses ###_{ε =10} or ###_{ε =20} as compression strength (1). However, the latter procedure is only suitable for smooth curves because otherwise the results will be influenced by fluctuating stresses too much. This is the case in brittle materials, e.g. In the present work the extrapolation method (3) was applied in most cases. In the few cases however, where the stress drops after a first maximum (e.g. curve "14" in Fig. 12), this method can not be used and the upper yield stress ###_u was used as compression strength.

Fig. 7: Stress-strain diagrams for AlSi6Cu4- and ZnCu4-foam.


a) AlSi6Cu4, orientation of samples according to (a) in Fig. 6,

- b) orientation (b) in Fig. 6,
- c): ZnCu4, orientation (e) in Fig. 6.


3.2. Aluminium foams

In a first series of measurements foams of the nominal composition AlSi6Cu4 were tested which had two closed surfaces originating outer from the foaming process and 4 sides where the porosity was open due to cutting (Fig. 3). The alloy AlSi6Cu4 was chosen because of its low melting point which facilitated the filling of aluminium tubes (see Sec. 3). In the compression tests the testing direction was chosen in parallel and perpendicular to the closed outer surface corresponding to the orientations (a) and (b) in **Fig. 6**.

The parameter varied was the overall density of the foam. In Fig. 7a and 7b stress-strain curves for a number of these foam specimens are shown. As one can see easily, the orientation of the closed skin with respect to the testing direction influences the deformation characteristics in a very pronounced way. In case (a) the stresses before the onset of strong plastic deformation and therefore the compression strenath are much higher than in case (b). Moreover, in the plateau regime the stress curve is nearly horizontal in case (a). In case (b) however, no range of constant stress can be observed except for the foams with very low densities.

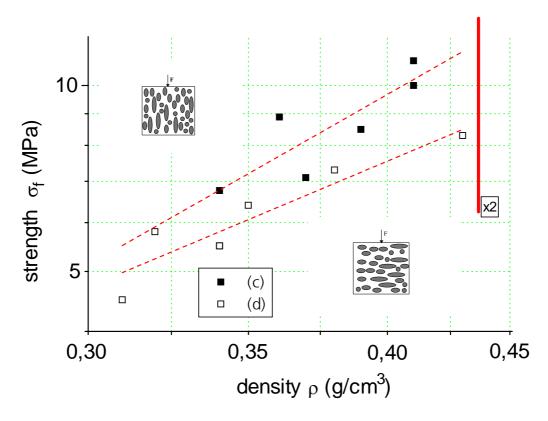
Fig. 8: Compression strength of aluminium foams with skins oriented perpendicular to the testing direction. Dashed line is a fit line with slope 1.89.

Fig. 9: Compression strength of aluminium foams with skins oriented in parallel to the testing direction. Dashed line is a fit line with slope 1.67. For matters of comparison the fit line of Fig. 8is included. Also, the compression strengths of the series of ZnCu4 foams are shown. The vertical bar denotes a factor of two in strength.

In general it can be said that for arbitrary orientations of the outer skin the plateau regime is longer the lower the foam densities are. But of course lower densities also imply lower absolute compression strengths. In **Fig. 8** this correspondence is shown in form of a plot of the compression strength versus the foam density. All samples were measured in orientation (b) of Fig. 6 corresponding to the data shown in Fig. 7b. The correlation between density and compression strength is obvious. Also, a relatively strong scatter of the measured strengths can be seen. This is partially due to the small size of the samples which on the average contain 15-20 pores across each sample dimension. For larger samples one could expect a smaller scatter of the results. However, one must not forget that foams are statistical systems and therefore are always expected to show a much more pronounced scatter of their properties as compared to conventional massive metals or alloys.

The axes in Fig. 8 are scaled logarithmically. The reason for this is that many mechanical and physical properties of porous systems follow a power law of the form [8]:

$A(\#\#) = A_0 \#\#\#\#\#\#^n$


where n is an exponent which depends on the quantity considered and A_0 is a prefactor which reflects the properties of the matrix material and also depends on the quantity considered.

For the compression strength one expects an exponent of n=1.5 for the case that the influence of the membranes can be neglected and the strength essentially comes from the struts of the cells [8]. This result was derived using a simple cubic model of the foam. The exponents measured in the present experimental work and other comparable investigations [11,12] are all somewhat higher and range from 1.5 to 2, under certain circumstances up to 3.

Fig. 9 shows the compression strengths for an orientation of the outer skins described by configuration (a) of Fig. 6. One sees that the values also follow a power law and that the exponent is in the same range as for the results shown in Fig. 8. For matters of comparison the resulting fit line of Fig. 8 has been included in Fig. 9 confirming what was already evident from Fig. 7a: the compression strength is much higher for orientation (a). The vertical bar in Fig. 9 denotes a factor of two and this is almost the ratio of the compression strengths corresponding to the two orientations.

The reason for the observed stress-strain curve of the samples with orientation (a) is the supporting effect of the vertically arranged densified outer foam sections, which would show a typical buckling behaviour - characterised by a high initial stress peak and a subsequent drop of the strength - without the connected foam. The combination of these outer sections with the foam results in a superposition of this buckling behaviour with the properties of the bare foam - as given in Fig. 7b - thus yielding the curves shown in Fig. 7a.

A further possible reason for the observed difference of the stress-strain curves in Figs. 7a and 7b was suspected to be a possible anisotropy of the foam itself. The samples corresponding to Fig. 7a were tested perpendicular to the foaming direction, the ones of Fig. 7b in parallel orientation. Due to the used production route of foamed metals which starts from a pressed semi-finished product, the foaming process starts in a

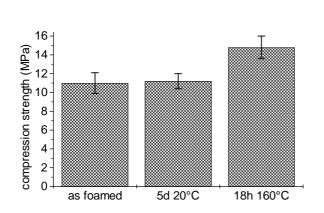


Fig. 10: Compression strength of aluminium foams with the foaming direction oriented in parallel and perpendicular to the force orientation (c) and (d) in Fig. 6. The dashed lines are fit lines, the vertical bar denotes a factor of two.

preferred direction. Pores are formed which are elongated in the plane perpendicular to the direction in which the powder was originally consolidated. During expansion the pores grow and become more spherical. However, possibly a slight asphericity remains thus causing an anisotropy of mechanical properties [8]. In order to evaluate this possible influence, a series of measurements was carried out where the relative orientation of the testing and foaming direction was varied. For this foam samples without any closed surfaces were prepared by cutting off the remaining two skins from the samples used before. The samples were tested in the two possible orientations denoted (c) and (d) in Fig. 6. The resulting compression strengths are compared with each other in Fig. 10. One sees that the samples with a parallel orientation of foaming and testing direction (#######) show a slightly higher compression strength than the samples with the alternative orientation. However, the difference between the two orientations is not as pronounced as between the two skin orientations compared with each other in Fig. 8 and 9 (see the corresponding vertical bars denoting a factor of two in Figs. 9 and 10). The reason for the slight anisotropy is probably the already mentioned deviation of pore sizes from sphericity. The idea of this argument is depicted in Fig. 10 by strongly exaggerated schematical pore arrangements. Note that in Fig. 10 the slopes of the fit curves can not be determined with sufficient accuracy due to the low number of data points. The lines in Fig. 10 should therefore be considered a guide for the eye.

3.3. Influence of heat treatment

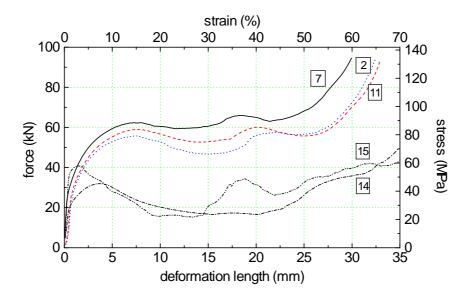
If a metal foam is made of a metal or alloy which can be age-hardened, the foam can, at least in principle, also be age-hardened in order to increase its strength. Heat treatment of a metal foam, however, is not as easy as for conventional dense metallic materials. Firstly, the thermal conductivity of metal foams is reduced in comparison to the corresponding dense matrix material by a factor of roughly $\rho_f/3\rho_s$, where ρ_f and ρ_s are the densities of the foam and the matrix material, respectively. Also, the conductivity fluctuates locally, because of the density distribution in the foam. This causes problems when the foam has to be guenched after the initial solution annealing. The low and non constant conductivity causes a lower quenching rate than in the corresponding dense material which also varies spatially. Therefore one can not always suppress premature precipitation processes in the metal foam completely. Moreover, water as a medium for guenching can not be used, because the water enters the porous structure and can partially destroy the foam. Therefore, pressurised air has to be used for guenching thus limiting the maximum guenching rate which can be achieved. The increase in strength by a heat treatment is therefore not as pronounced for metal foams as in massive materials.

Fig.11: Effect of various heat treatments on the compression strength of 2014 foams.

Fig. 11 shows the effect of a heat treatment of a foam made from a 2014 aluminium alloy. The foams were solution annealed at 500°C for 2 hours and then guenched with pressurised air. Some quenched alloys were tested right away without a further heat treatment, some were kept at room temperature for 5 days before testing and foams of a third group were annealed at 160°C for 18 hours. The latter heat treatment is expected to yield the highest agehardening effect. For each of the three alternatives four foam samples of a similar density (0.6 g/cm^3) were

chosen and an average compression strength measured. In Fig. 11 the average strength of each group of samples is compared. One sees that the samples which had the heat treatment at 160°C show a significantly higher strength than the two other types of samples which have the same strength within the statistical error limits. Therefore, it can be concluded that the heat treatment leads to an increase in strength of about one third of the initial strength.

3.4 Zinc foams


The cylindrically shaped zinc foam samples were tested uniaxially. Fig. 7c shows a selection of five stress-strain diagrams. The curves are similar to the ones measured on aluminium foams with outer skins orientated parallely to the testing direction (Fig. 7a). Because the zinc foams also exhibited a closed skin originating from the foaming process, this behaviour is understandable. The corresponding compression strengths are

compared to the aluminium foam data in Fig. 9. The upper and lower abscissa axes correspond to Zn and Al, respectively, and were normalised to relative density. One sees that the compression strength of Zn foams also follows a power law with an exponent of n###2. The absolute strengths of the aluminium and zinc alloys are very similar in this figure, which is of course pure coincidence.

4. Testing of composite structures based on aluminium foams

For energy absorbers a stress-strain curve is advantageous, which comes close to the ideal rectangular shape. Therefore, aluminium foams with outer skins orientated in parallel to the force approximate the ideal shape rather well as can be seen from Fig. 7a. The details of the deformation behaviour depend on material parameters such as the alloy composition and the density of the foam but also on the thickness of the closed skins. The thickness, however, can only be varied within a certain range by modifying the foaming conditions such as temperature and heating rate. Therefore, an attempt was undertaken to obtain a very pronounced skin effect by filling a tube with aluminium foam and testing the composite in an analogous way. Because the outer skins have a metallic bonding to the actual foam body, a configuration was desired, where the foam and the outer tube also have a metallic bonding. Such samples could be produced by the method described in Sec. 2.

Pieces of foam filled tube of 50 mm length were tested. However, the density of the foam filling could only be varied between 0.45 and 0.65 g/cm³. Some resulting stress-

Fig. 12: Stress-strain curves of axially tested aluminium tubes filled with aluminium foam. The sample numbers correspond to the foam densities. 2=0.53 g/cm³, 7=0.57 g/cm³, 11=0.49 g/cm³. In sample 14 the foam core has been removed prior to testing. Sample 15 was a precursor composite consisting of a tube and the foamable material.

strain curves are shown in **Fig. 12**. Also shown are curves corresponding to a precursor composite tube - consisting of an outer tube and the inner foamable layer - and to a tube where the foam had been removed prior to testing.

An obvious feature is the occurrence of a nearly horizontal plateau up to 50 to 55% strain and a very high plateau stress ranging from 80 to 90 MPa. The formation of folds in the outer tube is reflected by the slight stress modulations during compression. Compared with the precursor material and with the tube without foam the foam-filled tube shows a much higher strength and a better and longer plateau regime. The composite therefore shows mechanical strengths which are higher than the sum of the strengths of the single components. A reason for this is that the foam filling increases the stability of the profile by preventing the profile from buckling. This explains the higher yield point. After buckling has started, parts of the foam filling will be compressed in the various folds and this way make a further compression more difficult.

5. Technological outlook

Up to the present day only polymer foams or honeycomb structures are actually applied in lightweight construction or energy absorbing devices. The possibility of tailoring the stress-strain behaviour of such materials by choosing an appropriate matrix material, density, or cell orientation makes these structures nearly ideal for such applications. Metal foams could help to enlarge the spectrum of application for foams and porous materials in general due to their high strength and other properties which originate from the metallic nature of the matrix material.

Decisive for the quality of packing protections or energy absorbers is the ability of absorbing large amounts of energy without exceeding a given stress level which would lead to damage or injury. Metal foams can be superior to polymer foams where due to limited space higher deformation stresses combined with an equal or better energy absorption behaviour is required.

A result of the investigations presented here is that a simple piece of foam does not necessarily represent an optimum energy absorber. Foams with closed outer skins (structural foams) or composite structures of profiles and foams can have a deformation behaviour which makes them more suitable for such applications.

6. Summary

Mechanical tests of metal foams under uniaxial compression showed that the form of the stress-strain diagram depends on the density of the foam, on the relative orientation of the testing and foaming direction, and on the orientation of closed outer skins. Higher densities in general lead to higher stresses under compression conditions but also to a reduction of the range of the technologically important plateau regime. A parallel orientation of the outer skins with respect to the applied force leads to a higher strength and to an extension of the plateau regime as compared to the perpendicular orientation. The relative orientation of force and foaming direction, however, is of minor importance. The foams investigated are therefore nearly isotropic. The observed influence of closed and densified outer skins is comparable to the behaviour of foams with a high plateau stress. The optimisation of such structures will be the subject of future work.

References

- 1. J. Banhart (editor), Proc. Conf. Metal Foams, Bremen, 6.-7. Mar. 1997, MIT-Verlag Bremen [mostly in German]
- 2. W.W. Ruch and B. Kirkevag, Patent PCT/WO 91/01387 (1991)
- 3. I. Jin, L.D. Kenny and H. Sang, Patent US 4 973 358 (1990)
- 4. J. Baumeister, Patent DE 40 18 360 (1991) and US 5 151 246 (1992)
- 5. J. Baumeister and H. Schrader, Patent DE 41 01 630 (1992)
- 6. J. Baumeister, J. Banhart and M. Weber, Patent DE 43 25 538 (1996)
- 7. J. Banhart, J. Baumeister and M. Weber, Proc. European Conference on Advanced PM Materials, Birmingham UK, 23.-25. Oct.1995, p. 201
- 8. L.J. Gibson and M.F. Ashby, *Cellular Solids*, Pergamon Press, Oxford, (1988)
- 9. P.H. Thornton and C.L. Magee, Met. Trans. 6A (1975) 1253
- 10. P.H. Thornton and C.L. Magee, Met. Trans. 6A (1975) 1801
- 11. M. Weber, J. Baumeister, J. Banhart, Proc. Powder Metallurgy World Congress, Paris (1994), p. 585
- 12. J. Banhart, J. Baumeister, M. Weber, VDI-Berichte 1021 (1993) 277 (in German)
- 13. J. Banhart, J. Baumeister, M. Weber, Mat. Sci. Eng. A205 (1996) 221