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Abstract

We investigate spatial cross-correlations between two constituents, both

belonging to the same microstructure. These investigations are based on

two approaches: one via the measurement of the cross-correlation function

while the second uses the spatial distances between the constituents. The

cross-correlation function can be measured using the fast Fourier trans-

form, while the the distances are determined via the Euclidean distance

transform. The characteristics are derived from volume images obtained

by synchrotron microtomography. As an example we consider pore for-

mation in metallic foams, knowledge of which is important to control the

foam production process. For this example we discuss the spatial cross-

correlation between the pore space and the blowing agent particles in

detail.

Keywords: microtomography, image analysis, random sets, Euclidean distance

transform, Fourier transform, microstructure of foam, CT

1 Introduction

In recent years sophisticated imaging methods have been established which de-
liver high quality volume data. Due to the use of various contrast modes the
identification of different constituents (or material phases) inside these images
is possible, even with spatial resolutions allowing to depict features down to
the submicrometer range. In particular non-destructive three-dimensional (3D)
X-ray imaging methods have been used heavily in material science within the
past years to investigate fibre structures, sinter processes, crack formation in
rocks, metal matrix composites, metallic foams or syntactic foams.
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The increasing number of investigations using multi-dimensional imaging
techniques leads to a high demand for image analysis methods for deriving quan-
titative results from the measurements. Amongst others methods are needed
for finding dependencies between the positions of different constituents within
the image. That is, to decide whether correlations exist and of what type they
are.

In signal processing analyzing correlations between two signals – called cross-

correlations – is a standard task, usually solved with the help of Fourier meth-
ods. Spatial cross-correlation can be captured mathematically by the cross-

correlation measure for any two arbitrary random measures associated with
random structures based on the same probability space. A fundamental the-
oretical introduction to cross-correlation measures is given in Stoyan & Ohser
(1984); Lhotský (2006). Cross-correlations in marked point processes have been
studied in Stoyan (1984b,a).

For ecological data, the spatial cross-correlations between a random point
field, a random fiber system, and random sets were studied in Stoyan & Ohser
(1982), where the points are sites of trees, the fibers are river courses, and the
random sets are regions of specific soil types. Between such structures there
may exist mutual relationships, e. g. attraction between the point sites and the
river courses or inhibition between sites and soil types. A further application
in ecology is considered in Reich et al. (1994). For applications in geoscience
see e. g. Agterberg & Fabbri (1979); Duffy & Hughes-Clarke (2005), and for an
application in materials science see Jeulin (1986). In signal processing, spatial
cross-correlation of multi-antenna systems is considered in Jorswieck & Sezgin
(2004). In Section 3.1 we consider the cross-correlation of the volume measures
associated with two constituents.

A first approach to investigate correlations in metallic foams using morpho-
logical transformations is reported in Helfen et al. (2003, 2005). This method
was applied successfully to various cases. However, the enormous computa-
tional effort and the coarse grid of analyzable distance values motivates a re-
finement resulting in the method presented in Section 3.3, where we investigate
the distances between two constituents. More precisely, consider a point ran-
domly chosen in the first constituent. The smallest distance to the second con-
stituent is a random variable and its distribution can provide information about
the stochastic dependence or independence of the two constituents. This kind
of information is different from the information contained in cross-correlation
functions. Distance methods in the investigation of stochastic dependence (or
stochastic independence) were first used for marked point fields in Ma et al.

(2006). In Section 3.3 we introduce a distance method characterizing stochastic
dependence of two random sets.

We demonstrate the two methods for detecting spatial correlations between
different microstructural constituents using the example of metal foams. Due to
their high specific stiffness and low density, metal foams have a large potential
for industrial applications in all kinds of light-weight constructions (Banhart
& Weaire, 2002). Various production techniques are known to produce metal
foams (Banhart, 2001), a common one is the powder-metallurgical route (Yu
et al., 1998). Here the metal or alloy to be foamed in powder form is mixed
with a blowing agent and then compacted in order to create a solid precursor
material. The precursor is heated in a furnace. Ideally, the blowing agent starts
to release gas which then forms the pores at the same temperature at which
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Figure 1: Sketch of the synchrotron microtomography facility at the beamline
ID19 of the ESRF with embedded photo of the tomographic imaging station in
the background (Cloetens et al., 1999).

the alloy transforms from solid into a mushy state. Quenching of the sample at
the desired expansion state conserves the pore structure, resulting in a metallic
foam.

One focus of research on metallic foams lies on pore formation, as an un-
derstanding of this process promises to help to control the final pore structure.
The powder mixing process itself is stochastic and so far yields no possibility to
influence the resulting foam. However, only a reproducible homogeneous pore
structure guarantees the properties and quality of a metallic foam and thus
opens the market for mass production.

We analyse metallic foam samples made of commercial AW-6061 and AlSi7
with TiH2 as blowing agent in early foaming stages. As imaging method, syn-
chrotron microtomography is chosen since it is non-destructive, yields a good
material contrast and high spatial resolutions (Flannery et al., 1987). Exper-
iments are carried out at the ID19 of the European synchrotron ESRF. The
key question to be answered when investigating these samples is whether two
different types of pores – called type-I and type-II – do exist. Type-I pores are
inflated in the vicinity of the blowing agent while type-II pores form at sites
spatially independent of the blowing agent (Bellmann et al., 2001). The exis-
tence of type-II pores would indicate that the position of early pores in metallic
foams can be influenced and thus lead to means for pore structure controling.
In order to answer that question we investigate whether the pore space and the
positions of the TiH2 particles are spatially dependent in the two foam samples.

2 Microtomography

The acronym tomography nowadays summarizes imaging methods which deliver
3D data sets consisting of cross-sectional slices from the investigated sample ei-
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ther by non-destructive imaging (e. g. using X-rays as in our case) or destructive
analysis (e. g. position sensitive ion microscopy – 3D atom probe). Godfrey N.
Hounsfield introduced the first apparatus to examine non-destructively cross-
sections of a body in the 1970’s, based on an idea which had been published
already by Allan C. Cormack in the 1960’s. For 3D computed tomography,
the radiographic image interpreted as projection of the linear X-ray attenua-
tion coefficient can be used to reconstruct the mass distribution within a sam-
ple by combining the projection data from a set of different projection angles.
This method frequently called computed tomography (CT) had a strong impact
to medicine, see Hsieh (2003), and was introduced soon in materials science
as well (Reimers & Goebbels, 1983). Meanwhile, resolution has been pushed
down to the micrometer-scale (microtomography – µCT (Flannery et al., 1987)),
presently limited by the flux and spot size of the microfocus X-ray tubes, cf.
Banhart (2007).

In order to overcome these limitations, synchrotron radiation can be applied
(Flannery et al., 1987; Bonse & Busch, 1996), in particular when high sensi-
tivity, fast data acquisition, and high spatial resolution are required. Here, the
available flux is orders of magnitudes higher than compared to X-ray tubes,
delivering radiographic images with a low noise level while requiring exposure
times in the (sub-)second range only. The high flux also allows to monochro-
matise the radiation leading to a higher contrast within the images. Moreover,
the nearly parallel beam at typical synchrotron imaging setups increases image
quality as the reconstruction can be performed slice by slice, e. g. by eliminat-
ing so-called cone beam reconstruction artefacts. These artefacts appear when
using a non-parallel X-ray beam for imaging due to the overlap of projection
information from different imaged cross-sections of the specimen.

A typical setup for synchrotron microtomography (SµCT) without using
focusing X-ray optics is displayed in Figure 1. The synchrotron radiation is
monochromatised, e. g. by using multilayer mirrors, and the sample is placed
at an appropriately large distance from the source in order to eliminate the
influence of the finite source size. Besides the high-precision sample manipulator
(for the alignment of the rotation axis and to perform a scan with low sample
run-out), the important device for microtomography is a detector-microscope
designed to obtain highly resolved radiographic projection images, here using the
concept of Bonse & Busch (1996): a scintillator screen (powder or single crystal)
converts the X-ray photons of the transmitted beam into visible light photons.
The microscope optics behind images the luminescent screen onto a CCD chip.
The magnification factor here is given by the ratio of the objective’s and the
tube lens’s focus lengths. In the parallel section of the optical path a diaphragm
can be placed to optimise the ratio of absorbed X-ray photons (scintillator) vs.
detected luminescence photons (CCD) and to adapt the numerical aperture
to the resolution used. The maximal lateral resolution is determined by the
microscopes’ optics, the scintillating screen, the CCD chip, and the sampling
theorem, and can extend down to the submicrometer range (Banhart, 2007).

Tomographic techniques are applied in order to determine the spatial dis-
tribution of constituents represented. Such a spatial distribution is usually
represented by a random function f : R3 7→ R+ reconstructed from a set of
two-dimensional projection images, where R3 is the Euclidean space and R+

denotes the positive half-axes. For the reconstruction of the tomographic im-
ages the filtered backprojection algorithm is frequently used, see e. g. Banhart
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Figure 2: Tomographic slice of an AlSiCu metallic foam (left) and correspond-
ing Boolean image (right) containing only the morphological pore information
(Rack, 2006).

(2007). For classical absorption µCT, the function f corresponds to the linear
X-ray attenuation coefficient.

With the ongoing development, more sophisticated tomographic methods
have been introduced, allowing to use other contrast modes with higher sensi-
tivity such as the local electron density (holotomography), the chemical species
distribution (fluorescence tomography), the inner surfaces and interfaces (re-
fraction enhanced tomography), or the local crystalline lattice quality (topo-
tomography) – for further details see e. g. Banhart (2007).

Synchrotron tomography as modern, non-destructive and three-dimensional
microscopy can deliver volume images with a very good signal-to-noise ratio
and a high contrast between different material phases: ideal conditions to apply
a subsequent 3D image analysis. Nevertheless, one has to keep in mind that,
compared to established laboratory methods, synchrotron radiation is expensive
and available beamtime is limited, which restricts its application to selected
investigations.

3 Image processing and analysis

In general, tomographic data sets are volume images in the sense of a 3D-matrix
filled with (e. g. grey-scaled) values. Depending on the acquisition method and
contrast mode these values can represent, e. g., hydrogen concentration (Mag-
netic resonance imaging), density of metabolized isotopes (Positron emission
tomography), the electron density (holotomography), or as in our case the lin-
ear X-ray attenuation coefficient (µCT).

The first step of our image analysis is to identify and subsequently separate in
the data sets the different constituents. Each of the constituents is represented
as a Boolean image (also called binary image) allowing the application of further
data processing exclusively on this component. We use the difference between

5



the (grey) values as contrast criterion. Various techniques for separation have
been developed (Pal & Pal, 1993; Pal & Bhandari, 1993; Wirjadi, 2007), ranging
from simple global thresholding to complex stochastic algorithms. We chose a
region-growing algorithm in combination with a threshold hysteresis as this is
known to be robust with respect to noise, relatively easy to handle and to reduce
segmentation artefacts. A typical result can be seen in Figure 2. The thresholds
were chosen manually.

We now introduce two algorithms for investigating spatial dependence in
multi-constituent tomographic images. The capital letters Ξ, Ψ, . . . denote ran-
dom closed sets in R3 associated with constituents of macroscopically homoge-
neous microstructures. Here macroscopic homogeneity means that the distribu-
tion of each constituent is invariant with respect to all translations. (Notice that
in Stochastic Geometry a macroscopically homogeneous constituent is said to
be stationary.) Furthermore, the realizations of the random sets are assumed to
belong to the extended convex ring or to be topological closures of the comple-
ment of elements of the extended convex ring. The sets Ξ, Ψ, . . . are supposed
to be jointly simultaneously macroscopically homogeneous, i. e. the distribution
of (Ξ + x, Ψ + x, . . .) is invariant with respect to all shifts x ∈ R3 as well.

3.1 Spatial cross-correlation

It is well known that second order characteristics like cross-correlations as well
as their counterparts in frequency space can be measured from images of the mi-
crostructures, see Frank (1980); Manolakis & Proakis (1996). The fast Fourier
transform (FFT) and sophisticated algorithms for its computation (Marcotte,
1996) allow to determine these quantities fast and efficiently. The idea to mea-
sure second order characteristics in real space via the Fourier transform has
been around for some time (Torquato (2002), see also Ohser & Mücklich (2000),
Chapter 5), too. A sound mathematical basis for the computation of the auto-
correlation function of a materials constituent and its counterpart in frequency
space – the so-called Bartlett spectrum of the constituent – is provided in Koch
et al. (2003); Ohser et al. (2005).

In this section we consider the cross-correlation of the volume measures
associated with two random sets. Several problems arise in their computation
via frequency space and are addressed in the following. First, it should be noted
that the Fourier transform of a random set does not exist, i. e. the indicator
function of the set representing this constituent is not Fourier transformable.
Second, there is no spectral measure (a Bartlett spectrum) associated with the
cross-correlation function, since the cross-correlation function in general is not
positive definite. Finally, the fast Fourier transform (FFT) supposes periodicity
with respect to the window W through which the microstructure is observed.
However, the microstructure is not periodic (in particular not W -periodic). In
higher dimensions the fraction of W close to the boundary is larger than in
the one-dimensional case. Thus, the windowing successfully applied in one-
dimensional cases can lead to a considerable bias in higher dimensions.

Consider now two macroscopically homogeneous random sets Ξ, Ψ in R3.
Let V (Ξ ∩ · ) and V (Ψ ∩ · ) denote the random volume measures of Ξ and Ψ,
respectively, and let M (2) be the mixed second order moment measure defined
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as expectation E of the product of the volume measures,

M (2)(A × B) = E
(

V (Ξ ∩ A)V (Ψ ∩ B)
)

for any compact sets A, B ⊂ R
3. From the joint macroscopic homogeneity of Ξ

and Ψ it follows that M (2) is invariant with respect to diagonal shifts of A×B,
i. e.

M (2)(A × B) = M (2)((A + x) × (B + y))

for all translations of A×B in R6 along the diagonal x = y. Then the probability
P(x ∈ Ξ, y ∈ Ψ) depends on the difference h = y − x only. The function
covΞ,Ψ : Rn 7→ R defined by

covΞ,Ψ(h) = P(x ∈ Ξ, x + h ∈ Ψ) − P(x ∈ Ξ)P(x + h ∈ Ψ)

= E
(

(1Ξ(0) − VV (Ξ))(1Ψ(h) − VV (Ψ))
)

(1)

is called the cross-covariance function of the random sets Ξ and Ψ. Here 1
is the indicator, VV (Ξ) and VV (Ψ) denote the volume densities of Ξ and Φ,
respectively,

VV (Ξ) = E1Ξ(x), VV (Ψ) = E1Ψ(x), x ∈ R
3.

The cross-correlation function corΞ,Ψ of the random sets Ξ and Ψ is the
normalised cross-covariance function. For positive volume densities

corΞ,Ψ(x) =
covΞ,Ψ(x)

VV (Ξ)VV (Ψ)
, x ∈ R

3.

For the sake of easily readable formulae we consider just the cross-covariance
function in the following examples. The deduced properties carry over to the
cross-correlation function in a straightforward manner.

Examples

(i) Clearly, for independent random sets Ξ, Ψ it follows that covΞ,Ψ(x) = 0 for
all x ∈ R

3. However, the condition that the cross-covariance vanishes is
necessary but not sufficient for the independence of Ξ and Ψ.

(ii) Let Ξ be a macroscopically homogeneous random closed set with a volume
density 0 < VV (Ξ) < 1. If Ψ is the topological closure Ξc of the comple-
mentary set Ξc of Ξ. Then Ψ = Ξc inherits the macroscopic homogeneity
of Ξ and VV (Ψ) = 1 − VV (Ξ). Moreover, the sets Ξ and Ψ are dependent
random variables.

Note that for most constituents of materials structures the cross-covariance
function is an even function, covΞ,Ψ(x) = covΞ,Ψ(−x) = covΨ,Ξ(x). In this
case, the identity

P(x ∈ Ξ, y ∈ Ξ) + P(x ∈ Ξ, y ∈ Ψ)

+P(x ∈ Ψ, y ∈ Ξ) + P(x ∈ Ψ, y ∈ Ψ) = 1, x, y ∈ R
3,

yields

covΞ,Ψ(x) = 1 −
1

2

(

covΞ,Ξ(x) − covΨ,Ψ(x)
)

, x ∈ R
3,
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where covΞ,Ξ and covΨ,Ψ are the auto-covariance functions of the fore-
ground set Ξ and the background set Ψ, respectively. Hence, independence
can not be expected as the auto-covariance differs from zero in general.
That means, foreground (which may represent a material’s constituent)
and background (the matrix) are correlated in general.

(iii) Given two random closed sets Ξ and Ψ, 0 < VV (Ξ) < 1 and VV (Ψ) >
0, we introduce a further random set Ψ′ which is the intersection of Ψ
and the topological closure of the complementary set of Ξ, i. e. Ψ′ =
Ψ ∩ Ξc. The sets Ξ and Ψ′ depend on each other even if Ξ and Ψ are
independent random sets. Assume now that Ψ is not observable directly,
i. e. ’information’ on Ψ can be gained by observing Ξ and Ψ′ only. If Ξ
and Ψ are independent random sets, then Ψ is also independent of Ξc and
for all x, y ∈ R

3

P(x ∈ Ξ, y ∈ Ψ′) = P(x ∈ Ξ, y ∈ Ξc, y ∈ Ψ)

= P(x ∈ Ξ, y ∈ Ξc)P(y ∈ Ψ).

In terms of the cross-covariance functions covΞ,Ψ′ and covΞ,Ξc the above
identity is equivalent to

t1(x) =
covΞ,Ψ′(x)

covΞ,Ξc(x)VV (Ψ)
= 1

for all x with covΞ,Ξc(x) 6= 0. The relationship t1(x) ≡ 1 serves as a neces-
sary (but not sufficient) criterion for the sets Ξ and Ψ to be independent.

3.2 Estimation of the cross-correlation function

Denote by C the space of complex numbers. In the continuous case the Fourier

transform f̂ = Ff of a measurable function f : R3 7→ C is defined by

F [f ](ξ) =
1

(2π)3/2

∫

R3

f(x)e−iξxdx, ξ ∈ R
3.

Notice that the function f̂ is usually complex-valued, f̂ : R3 7→ C, even in the
case when f is only real-valued. Analogously, the Fourier cotransform or the
inverse Fourier transform f̌ = F̄f of f is defined by

F̄ [f ](x) =
1

(2π)3/2

∫

R3

f(ξ)eixξdξ, x ∈ R
3.

The Fourier transform and cotransform are linear and for any integrable function
f , the inversion formulae F̄Ff = f and FF̄f = f are valid.

The Fourier method is now applied to estimate the spatial cross-correlation
function. To this end, we consider again the cross-covariance function since an
estimator for this function immediately yields a ratio unbiased estimator for the
cross-correlation function.

First we remark that the cross-covariance function is continuous but in gen-
eral not positive definite. Hence, Bochner’s theorem can not be applied in order
to introduce a spectral measure associated with the cross-covariance function.
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Until now it is not known if there is any counterpart of the cross-covariance
function in inverse space at all.

We consider the case where Ξ and Ψ are observed through the same window
W . Let W be compact with nonempty interior and containing the origin. In
order to give an estimator of the cross-covariance function of two macroscopically
homogeneous random closed sets Ξ and Ψ, we introduce the windowed functions

fW (x) = 1W (x)(1Ξ(x)−VV (Ξ)), gW (x) = 1W (x)(1Ψ(x)−VV (Ψ)), x ∈ R
3,

associated with Ξ and Ψ, respectively. The boundedness of W ensures the
integrability of fW and gW , and hence, their Fourier transforms f̂W and ĝW

exist almost surely. Furthermore, let cW = 1W ∗1W̌ denote the window function
of W , where ∗ is the convolution and W̌ is the reflection of W at the origin.
Furthermore, let f(x) denote the complex conjugate of f(x). Then, analogously
to the estimator of the auto-covariance function of a random set Ξ described in
Koch et al. (2003) and Ohser et al. (2005), the cross-covariance function of Ξ
and Ψ can be estimated via

(2π)3/2F̄ (|
¯̂
fW ĝW |)(x)

cW (x)

for all x belonging to the interior of W . The estimator given above is unbiased
for covΞ,Ψ.

To our image data given on lattices we apply a discrete version of the Fourier
transform, which allows the estimation of the cross-covariance function (and
thus of the cross-correlation function too) with a complexity of O(n log n), where
n is the number of pixels in the Boolean images corresponding to Ξ and Ψ,
respectively.

3.3 Distance method

In this section we describe an alternative approach for characterizing stochas-
tic dependence of two random sets using the distances between them. More
precisely, we consider the distribution of the smallest distance from a point in
the first set to the second set and exploit the information about the stochastic
dependence of the two sets it yields.

Similar to the fast Fourier transform for cross-correlation, the Euclidean
distance transform (EDT) is a tool which allows fast computation of quantities
like the spherical contact distribution function characterizing shortest distances
between random sets, see Mayer (2004). The EDT can be computed in linear
time, or very efficiently with quasi-linear behaviour (Cuisenaire, 1999, Chapter
5).

Let ‖x − y‖ denote the Euclidean distance of two points x, y ∈ R3. The
shortest distance

dist (x, Ξ) = inf{‖x − y‖ : y ∈ Ξ}

between a given point x ∈ R3 and the random set Ξ is a random variable and
the mapping dist ( · , Ξ) can be considered as a random field. If Ξ is macro-
scopically homogeneous then dist ( · , Ξ) too, i. e. the distribution of dist (x, Ξ)
is independent of the position x.

We consider the probability that the distance dist (x, Ξ) is less than a given
value r ≥ 0 under the condition that x belongs to Ψ. Let A ⊕ B = {x + y :
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x ∈ A, y ∈ B} denote the Minkowski addition of the sets A, B ⊂ R3. For the
particular case of a ball Br with radius r and centred at the origin it follows
that A ⊕ Br = {x ∈ R

3 : dist (x, A) ≤ r}. If P(x ∈ Ψ) > 0 then

P(dist (x, Ξ) ≤ r |x ∈ Ψ) =
P(dist (x, Ξ) ≤ r, x ∈ Ψ)

P(x ∈ Ψ)

=
P(x ∈ (Ξ ⊕ Br) ∩ Ψ)

P(x ∈ Ψ)

for all x ∈ R3 and r > 0. The conditional probability considered above is
independent of x and it follows that

P(dist (x, Ξ) ≤ r |x ∈ Ψ)

=
VV ({x ∈ R3 : dist (x, Ξ) ≤ r} ∩ Ψ)

VV (Ψ)
, r ≥ 0 (2)

=
VV

(

(Ξ ⊕ Br) ∩ Ψ
)

VV (Ψ)
, r ≥ 0. (3)

In the following we write FΞ,Ψ(r) = P(dist (x, Ξ) ≤ r |x ∈ Ψ) for short. Notice
that FΞ,Ψ can be considered as a probability distribution function.

Examples

(i) If Ξ and Ψ are independent random sets, we obtain

FΞ,Ψ(r) = P(dist (x, Ξ) ≤ r) = VV (Ξ ⊕ Br), r ≥ 0.

That is, stochastic independence of Ξ and Ψ implies that the function
FΞ,Ψ is independent of Ψ.

(ii) Let now 0 < VV (Ξ) < 1 and set Ψ = Ξc. From the formulae derived above,
the macroscopic homogeneity of Ξ, and the fact that the edge of Ξc is
almost surely a set of measure 0, it follows that

FΞ,Ξc(r) = P(dist (x, Ξ) ≤ r |x ∈ Ξc)

=
VV ((Ξ ⊕ Br) ∩ Ξc)

VV (Ξc)

=
VV (Ξ ⊕ Br) − VV (Ξ)

1 − VV (Ξ)
, r ≥ 0.

The function FΞ,Ξc is the spherical contact distribution function of Ξ well
known in stochastic geometry.

(iii) Let Ξ and Ψ be independent macroscopically homogeneous random sets
with 0 < VV (Ξ) < 1 and VV (Ψ) > 0. As in Example (iii) on Page 8 we
define Ψ′ = Ψ ∩ Ξc. Then it follows that

FΞ,Ψ′(r) = P(dist (x, Ξ) ≤ r |x ∈ Ψ′)

=
P(dist (x, Ξ) ≤ r, x ∈ Ψ, x ∈ Ξc)

P(x ∈ Ψ, x ∈ Ξc)

=
P(dist (x, Ξ) ≤ r, x ∈ Ξc)

P(x ∈ Ξc)

= FΞ,Ξc(r), r > 0.
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As a consequence, the ratio t2 defined by

t2(r) =
FΞ,Ψ′(r)

FΞ,Ξc(r)
, r ≥ 0

can be used to check independence of Ξ and Ψ. Stochastic dependence of
Ξ and Ψ can be assumed if t2 differs from 1.

The function FΞ,Ψ can be computed based on (2) or (3), respectively. We
apply (2) as this leads to a more efficient method.

Assume that both Ξ and Ψ are observed through a compact window with
nonempty interior. The distance dist ( · , Ξ) is closely related to the Euclidean
distance transform EDTΞc of Ξc which maps to each point of R3 its shorted
distance to Ξ,

EDTΞc : R
3 7→ [0,∞) : x 7→ dist (x, Ξ).

Now the Euclidean distance transform is masked with the random set Ψ as well
as with the reduced window W⊖Br where ⊖ denotes the Minkowski subtraction
defined by A ⊖ B = (Ac ⊕ B)c for sets A, B ⊆ R3. This means we consider the
product

EDTΞc1Ψ1W⊖Br
.

The observation of distances less than r in the reduced window is free of edge
effects. Hence, for known volume density VV (Ψ) the ratio

vol ({x ∈ R3 : (EDTΞc1Ψ1W⊖Br
)(x) ≤ r})

VV (Ψ)vol (W ⊖ Br)

is an unbiased estimator of FΞ,Ψ(r) for those r with vol (W ⊖ Br) > 0, i. e.
vol (W ⊖ Br) is the window function appropriately chosen for the Euclidean
distance. (If also VV (Ψ) is estimated from the image data then the above
estimator is called ratio-unbiased.)

In our case the data are given on a point lattice, thus the EDT is applied
to the image. We use the hybrid algorithm by Cuisenaire (1999) which is very
efficient on large 3D images although having a worst case complexity slightly
higher than linear.

Using the EDT on the lattice we measure the shortest distances of the back-
ground pixels to the foreground pixels while we are interested in the shortest
distance to the complementary set. Consider two neighboring lattice points x
and y, one belonging to the foreground and the other belonging to the back-
ground. Then the boundary of Ξ intersects the straight line [x, y] at a point
(1−p)x+py where p ∈ [0, 1]. In the case of a macroscopically homogeneous set,
p is uniformly distributed on [0, 1]. Its expectation is 1/2 and, hence, in case
of a cubic lattice half the lattice spacing must be subtracted from the distances
measured by the EDT.

4 Spatial cross-correlations in metallic foams

In order to demonstrate the potential of the developed methods, they are now
applied to investigate pore nucleation during the early foaming process of alu-
minium alloy foams produced by the powder-metallurgical route. We focus on

11



50 µm

Figure 3: Metallographic image of an AlSi7 sample (1.5% porosity, etched by
0.5% HF): aluminium particles (light grey), silicon particles (grey) and TiH2

(marked with circles) – Rack (2006).

the two possible mechanisms for pore nucleation already postulated for zinc
foams (Bellmann et al., 2001) – type-I pores inflated in the direct neighborhood
of blowing agent particles and type-II pores forming more distantly due to mi-
gration of the blowing gas in the foaming metal matrix, e. g. as a result of its
residual porosity.

4.1 Sample preparation

We consider two different samples – one (called AlSi7) based on a precursor
prepared by mixing elemental aluminium with the addition of elemental silicon
powder and titanium hydride (TiH2) as blowing agent, to yield a powder mix
containing 7 % of its weight (weight-percent – wt.-%) silicon and 0.5 wt.-% TiH2.
For the other sample, the precursor is produced by using an aluminium alloy
powder (AW-6061 = AW-AlMg1SiCu) again with 0.5 wt.-% TiH2 as blowing
agent. The resulting two powders are compacted to dense foamable precursor
materials (30 min at 12 MPa and 450oC, Elmoutaouakkil et al. (2002)). For
both cases, the foaming is carried out by heating the precursors in a pre-heated
furnace which triggers the release of hydrogen gas by the blowing agent. The
heating process is soon interrupted (200 s dwell time in the furnace for AlSi7,
105 s for Al6061) by quenching in order to freeze the so-created early foam
structures.

A very efficient first approach for the analysis of pore formation are 2D
metallographic images of the specimens: the sample is cut, then polished along
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the resulting slice and etched in order to visualise former powder particles due to
their different grain boundaries. A light microscopic image of an AlSi7 sample,
as shown in Figure 3 (1.5% porosity – early stage), shows the different elements
and gives a first insight into the foaming process – in a destructive manner and
without spatial (i. e. 3D) information. This metallographic image shows that
most of the early pores in this AlSi7 foam are not located in the vicinity of
the blowing agent particles TiH2 and therefore can be categorised as type-II
(Bellmann et al., 2001). Although intuition suggests the opposite we derive
as a first hypothesis that the pore formation in early AlSi7 foams is spatially
independent from the position of the blowing agent particles.

4.2 Imaging

In order to further examine this hypothesis, synchrotron microtomography is
applied to the AlSi7 and AW-6061 samples. Subsequently, correlation analysis
is performed to identify the predominant location of pore nucleation. That is,
the methods introduced in Sections 3.1 and 3.3 are applied to blowing agent
particles and the pore structure in the resulting 3D images.

Specimens are cut from the produced foams, in order to fit the field of view
for SµCT which is closely related to the imaging resolution required. The 3D
images are taken at the imaging beamline ID19 of the European Synchrotron
Radiation Facility (ESRF), Grenoble, France – cf. Figure 1. Due to the small
pores present in our samples, a pixel size of 0.7 µm with a 2048 x 2048 pixel CCD
chip is used, yielding a true spatial resolution better than 1.5 µm and leading to
a 1.4×1.4 mm2 field of view. The maximum sample volume to be analysed with
this setting would be (1.4 mm)3. The synchrotron beam is monochromatised to
17 keV which allows easy segmentation. The resulting tomographic data sets
(see Figures 4 and 5 – each 660 x 660 x 660 voxels) are separated into Boolean
images of the pore structure and the blowing agent according to Section 3.
Subsequently, the correlation is investigated.

4.3 Results of image analysis

First, we look at the AlSi7 foam in early expansion stage with a low porosity of
5.9%. In Figure 6 (left) the result of the correlation analysis is plotted, showing
the spatial correlation between the volume identified as pores and the volume
identified as blowing agent. The values of t1 remain close to one for all distances,
indicating that there is weak cross-correlation. The distance method (Section
3.3) yields a similar result. For this early AlSi7 foam, the function δt2 (which is
roughly speaking the density of the blowing agent in dependence of its distance
to the pore space normalised with the mean density of the blowing agent TiH2

in the foam matrix) is close to 1 for all distances to the pore surface indicating
low stochastic dependence between blowing agent and predominantly type-II
pores, see Figure 6 (right). For the sake of comparability, the quantity t2 is
presented here in a differential form. The shape of the graph of

δt2(r) =
FΞ,Ψ′(r + δr) − FΞ,Ψ′(r)

FΞ,Ξc(r + δr) − FΞ,Ξc(r)
, r ≥ 0, δr > 0,

shown in Figure 6 (right) is similar to the one of t1, cf. Figure 6 (left).
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Figure 4: Top: 3D rendering of a synchrotron microtomography image (0.7 µm
pixel size, < 1.5 µm spatial resolution, 17 keV X-ray photon energy) showing
an AW-6061 metallic foam in early stage of expansion (2.8% porosity): the
aluminium-silicon matrix (grey), the blowing agent TiH2 (white) and the pores
(black) – Helfen et al. (2003). Bottom: the same data set rendered with sepa-
rated constituents (aluminium-silicon matrix in semitransparent blue, the blow-
ing agent TiH2 in red and the pores in yellow) reveals that pores are aligned
along parallel lines.

The hatched area in the plots is not accessible for analysis because of the halo
effect: The image contains three constituents (pores, aluminium foam matrix,
blowing agent particles). Due to the discrete sampling and the imaging system’s
point spread function the interface between pore and blowing agent is blurred,
so that a voxel layer between pore volume and blowing agent volume contains
grey-values between the pore-grey values and the blowing-agent grey values.
These values are almost identical with the grey values of the aluminium foam
matrix. Thus the algorithm used for creating the Boolean images identifies this
layer as aluminium matrix. Therefore these voxels are omitted when applying
the correlation analysis on the pore and the blowing agent volume.

The range of the abscissa in the plots is different because for the cross-
correlation method it is determined via the edge length of the investigated vol-
ume while for the distance method it is limited by the largest value in the
distance map of the data set.

Going back to the metallographic image in Figure 3, one can see that most
pores are located close to silicon particles or are merged with silicon particle
clusters. We therefore derive the second hypothesis that in AlSi7 foams the
positions of the early pores are determined by the silicon particles and not the
TiH2 particles. Further investigations including holotomography on AlSi7 foams
(see Helfen et al. (2005)) show spatial correlation between pores and silicon
particles. Thus we derive as final conclusion that the blowing agent particles
do not influence the position of the first pores in AlSi7 foams – contrary to
AW-6061 foams.

Figure 7 shows the results of image analysis for the AW-6061 sample. There
are larger values for t1 at short distances to the pore space, indicating high
spatial correlation between the TiH2 positions and the early pore positions.
The same holds for the distance method: high values for δt2 for short distances
to the pore space correspond to a high density of TiH2 which indicates strong
dependence between the positions of TiH2 particles and the early pores – the
type-I pores.

5 Discussion and summary

We have introduced two new approaches to analyze spatial cross-correlation in
multi-constituent volume data sets. The first one fits the common understanding
of cross-correlation between constituents. It is based on the measurement of the
cross-correlation function and is well-adapted to our 3D volume image setting
where the position of one constituent never overlaps with the position of another
constituent. The cross-correlation is the characteristic which is suited for our
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Figure 5: Top: 3D rendering of a synchrotron microtomography image (0.7 µm
pixel size, < 1.5 µm spatial resolution, 17 keV X-ray photon energy) show-
ing an AlSi7 metallic foam in an early stage of extension (5.9% porosity): the
aluminium-silicon matrix (grey), the blowing agent TiH2 (white) and the pores
(black) – Helfen et al. (2003). Bottom: the same data set rendered with sepa-
rated constituents (aluminium-silicon matrix in semitransparent blue, the blow-
ing agent TiH2 in red and the pores in yellow) reveals in contrast to AW-6061
(cf. Figure 4) a lateral extended pore structure with parallel orientation.
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Figure 6: Spatial cross-correlation for the AlSi7 foam sample (5.9% porosity).
Left: the values of the function t1 are close to 1 for all distances to the pore
volume, indicating low cross-correlation. Right: the function δt2 is close to 1
for all distances of the blowing agent to the pore surface. (Hatched areas not
accessible for analyses due to halo effects.)
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Figure 7: Spatial cross-correlation for the AW-6061 foam sample (2.8% poros-
ity). Left: the function t1 showing high values for short distances to the pore
space. Right: the function δt2 showing high volume density of blowing agent
particles close to the pore surface. (Hatched areas not accessible for analyses
due to halo effects.)
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problem but its computation involves the Fourier transform with a complexity
of O(n log n) (where n is the number of pixels) and the requirement to handle
complex float values, resulting in an increased memory consumption.

Our second approach is based on determining the inter-constituent distances
via the EDT, which yields a further necessary condition for stochastic indepen-
dence of two constituents. The main improvement of the method compared to
the algorithm described in Helfen et al. (2003, 2005) is the direct access to the
distance information between the constituents which allows a much finer dis-
cretisation of the abscissa range in the plots 6 (right) and 7 (right). Compared
to the Fourier-based method, processing times are shorter as well as memory
consumption is four times lower as fast algorithms for the EDT are only of com-
plexity O(n) and require to handle real float values only. Memory consumption
is particularly important as the size of microtomography data sets can go up
to several tens of gigabytes and the memory available even in modern 64bit
machines is still limited compared to that.

The distance method delivers a quantity describing the shortest distance of
the volume elements of one constituent (in our example the blowing agent) to
the surface of another (here the pore space). In our example application of
this quantity could be found easier to interpret than the cross-correlation of
the volume elements assigned to different constituents. Nevertheless, this is a
matter of taste.

We can summarize that our investigations of AW-6061 and AlSi7 foams show
that two types of pores exist in the early stages of the foaming process. For the
AW-6061 sample made from a rather homogeneous precursor consisting only of
AW-6061 and the blowing agent TiH2 we find type-I pores which are spatially
correlated with the positions of the TiH2 particles. The AlSi7 sample with
its heterogeneous precursor consisting of aluminium and silicon as elementary
materials and TiH2, shows no spatial correlation between pores and blowing
agent particles’ positions, indicating predominantly type-II pores. This suggest
that the way of manufacturing the material to be foamed strongly influences
the resulting pore structure. The materials science aspect of our results will be
discussed more detailed in a forthcoming publication.

Acknowledgments

Katja Schladitz was supported by the Rheinland-Pfalz cluster of excellence ”De-
pendable Adaptive Systems and Mathematical Modeling” (www.dasmod.de).

The research of J. Ohser was supported by the FH3-programme of the Ger-
man Federal Ministry of Education and Research under project grant 1711B06.

We thank Rebekka Malten for image and data processing, Heiko Stanzick
for sample preparations, Tetyana Sych for the beautiful volume renderings, the
reviewers for the useful remarks and Petra Pernot for experimental support.

The image analysis was performed using Fraunhofer ITWM’s MAVI software
Fraunhofer ITWM, Department of Image Processing (2005).

18



References

Agterberg, F. P. & Fabbri, A. G. (1979). Spatial correlation of stratigraphic
units quantified from geological maps. Computers & Geosci. 4, 515–526.

Banhart, J. (2001). Manufacture, characterisation and application of cellular
metals and metal foams. Prog. Mat. Sci. 46, 559–632.

Banhart, J., ed. (2007). Advanced Tomographic Methods in Materials Research

and Engineering. Oxford University Press, Oxford.

Banhart, J. & Weaire, D. (2002). On the road again – metal foams find favour.
Physics Today 55, 37–42.

Bellmann, D., Banhart, J. & Clemens, H. (2001). Investigation of metal foam
formation by microscopy and ultra small-angle neutron scattering. Acta Ma-

terialia 49, 3409–3420.

Bonse, U. & Busch, F. (1996). X-ray computed microtomography (µCT) using
synchrotron radiation (SR). Prog. Biophys. Molec. Biol. 65, 133–169.

Cloetens, P., Ludwig, W., Baruchel, J., Van Dyck, D., Van Landuyt, J., Guigay,
J. P. & Schlenker, M. (1999). Holotomography: Quantitative phase tomog-
raphy with micrometer resolution using hard synchrotron radiation X-rays.
Appl. Phys. Lett. 75, 2912–2914.

Cuisenaire, O. (1999). Distance transformations: fast algorithms and applica-

tions to medical image processing. Ph.D. thesis, Université catholique de Lou-
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