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Abstract
Characterisation of facets of particles is a common problem. In this article an algorithm is pre-

sented which allows automated quantitative 3D analysis of facets of many particles within tomographic
datasets. The algorithm is based on the analysis of probability distributions of the orientations of trian-
gle normals of mesh representations. The result consists of lists containing number of detected facets,
their size, global orientation and the interplanar angles between facets for each analysed particle. Cha-
racterisation of each particle according to any of these facet properties is then possible, e.g. statistics
about different crystal shapes or removal of particles that do not show significant faceting. Analyses of
a 3D dataset obtained by Focused Ion Beam (FIB) tomography of a sample containing spinel particles
are presented.

1 Introduction

Micro- and even nano-crystalline particles occur
mostly faceted1. Crystal habitus and facet sizes
play an important role in their chemical and phys-
ical behaviour. For example in catalytic processes
the distribution of facet sizes and edge lengths influ-
ence the catalytic effectiveness of the material2–7.
Farin and Avnir 8 pointed out that active and less
active sites found on different facets, which depend
on the habitus of the nanocrystallite, determine its
catalytic properties. For that reason, we developed
a technique to quantify the size of facets, crystal
habitus of micro- and nano-particles and facet dis-
tribution directly in tomograms of dispersed crys-
tallites. Ideally, facets are flat faces defining shape
and volume of a particle. However, due to dis-
cretization, measurement and reconstruction arte-
facts, digital representations of facets in tomograms
are generally not flat. This article describes a pro-
cedure that exploits a roughness measure and a
threshold criteria to allow uneven but nearly flat
regions to be detected as facets.
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During formation of a crystal, its growth might
be faster in some crystallographic directions since
atoms or molecules in the surrounding vapour or liq-
uid energetically favour attaching to certain planes.
In some cases, the surface area of individual facets
relative to the total surface of the particle changes
during growth, some facets even vanish. Therefore,
orientations and (relative) sizes of facets can give
information about the growth state of a crystal.
Nucleation induced by impurities or by edges often
leads to imperfect crystal growth. Imperfect crys-
tals exhibit irregular growth resulting in seemingly
unfaceted regions if the resolution of the imaging
technique is too low to reveal the fine faceting. We
refer to this partial faceting as ‘degree of faceting’.

The most common evaluation of facets and inter-
planar angles of digital representations is by man-
ual determination of angles of a few selected par-
ticles9–12. This procedure can lead to a biased
selection of ‘good’ particles. Manual determina-
tion of angles between not completely flat crystal
faces in 3D by a 2D projection is prone to er-
rors and manual measurement of the surface area
of a facet is even more difficult and time consum-
ing. Computer-aided analysis of facets, orientation
and structure, with user interaction, has been de-
scribed13–15. These are very application specific ap-
proaches.

The facet analysis program to be presented here
(referred to as ‘facet analysis’) is fully automated,
versatile, extendible and enables gathering of statis-
tics of many particles. It is applicable to any tomo-
graphic dataset (see Sec. 3) and runs without any
user interaction.
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Figure 1: Facet detection process
Figure illustrating the facet detection process with (right column) and without (left column) smoothing of the mesh.

a: Unmodified (raw) marching-cubes surface (of a spinel particle).
b: Smoothed marching-cubes surface.
c: Equirectangular projection of the point distribution on the unit sphere of a) (elevation ϑ ∈ [−π/2, π/2], azimuth φ ∈

[−π, π], same colour scale as in Fig. 2).
d: Same as in c) but for b) (corresponding to Fig. 2). The circles mark the facet orientations for an aligned octahedron

whereas the crosses mark those of an aligned rhombic dodecahedron (see Fig. 6). The marks that are close to a maximum
in the underlying distribution are coloured green, those farther away yellow or red. The markers are white where the
particle does not exhibit facets.

e: Detected facets of a) coloured differently.
f: Detected facets of b) coloured differently (see also Fig. 7).

The automated analysis technique developed is
based on routines freely available and documented
in the ITK16 and VTK17 libraries. A polygon mesh
that resembles the original particle shape is created
from a voxel representation for each label of a to-
mographic dataset, see Fig. 1ab. Then, the surface
normal orientation of each polygon of the mesh is
calculated. The surface normal vector is regarded
as a normalized point vector whose tip lies on the
unit sphere. Depending on the degree of faceting
of the label, the local density of the point distribu-
tion will vary (see for example Fig. 2a). A surface
region of the label mesh consisting of many similar
aligned triangles will lead to a maximum in the local

point density (visualized by the colour gradient in
Fig. 1cd, 2). The next step defines a border around
each local maximum to identify the points close to
the maxima. Screening a region around a maxi-
mum is necessary since most facets will not be flat
due to previous discretization causing a spread of
the points around the maximum density (visible in
Fig. 1d, 2). This spread of points can be regarded
as an uncertainty in the evaluated orientation of
the detected facet (see e.g. Fig. 1f) and arises from
the error in tomographic reconstruction, the intro-
duction of artefacts and through smoothing of the
mesh. However, smoothing is necessary because of
the discrete nature of the tomogram and will be de-
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scribed in the following section (compare Fig. 1abdf
and Fig. 1ace). The facet analysis program takes an
image with labelled particles as input and outputs
a list of facet characteristics and a mesh with the
identified facets for each label.

The sample consists of spinel crystals (MgAl2O4)
whose composition might vary. The particle used
for the demonstration of the stages of the analysis is
taken from a 3D dataset of an aluminium foam cell
wall created by Focused Ion Beam (FIB) slicing. Ul-
tra fine (80 nm to 1 µm) spinel crystals (MgAl2O4)
act as stabilizers in aluminium foams produced by
a liquid metal route.18 These spinel particles segre-
gate on the gas-solid interface of foam cell walls.18

FIB tomography of such interfaces allows to visual-
ize this particle segregation in 3D and to measure
its volume, which is an essential part of stabilization
studies. The distinction of the spinel particles from
the cell wall matrix is affected by the presence of ox-
ides and other unwanted phases, due to insufficient
contrast differences. Since spinel particles possess
fcc (face-centred cubic) crystal structure and ex-
hibit facets, the spinel crystals can be distinguished
from other phases easily by automated facet detec-
tion and analysis. As the analysis will reveal later
(Sec. 3.1), the example particle does not have the
typical octahedral shape of spinel crystals. Until
then, we will still refer to the shape as an ‘octa-
hedron’ instead of the more general ‘asymmetric
square bipyramid’.

After outlining the facet analysis, application ex-
amples will demonstrate the strengths and limita-
tions of the method and will show its applicability
on tomographic datasets in general.

2 Description of the algorithm

The following sections describe the processing steps
in the facet detection and analysis program. An
image containing labelled particles (e.g. all voxels
of an interconnected region are assigned a unique
value representing the label) is assumed as the start-
ing point. The whole process is subdivided into:

• Preprocessing

• Facet detection

• Facet analysis

2.1 Preprocessing

1.) Mesh creation A mesh of each label is created
by the marching-cubes algorithm (described in Ref.
19 and 20 and discussed in Sec. 2.4). The result-
ing mesh (or surface) consists only of triangles of
similar sizes, see Fig. 1a. In 3D, there can only be
26 orientations according to the 26 different nearest
neighbours of a voxel.
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Figure 2: Weighted point densities on a sphere
The figure visualizes the evaluation of the Local Weighted
Point Density (LWPD). The point density distribution used
here for demonstration is taken from the intermediate state
of the facet analysis of the smoothed particle from Fig. 1b.
The top image a) shows the point distribution on the unit
sphere. The colouring of a point P is according to the sum
of the weights of the other points found within a local sphere
(r < 1) centred at P. (The colour bar was chosen such that
a relative facet size above 1/8 would be red.)
The equirectangular projection is given in b) (angles in ra-
dians).

2.) Smoothing A windowed sinc filter21 is used
to smooth the mesh, modifying the orientation of
the surface normals to be a weighted sum of nor-
mals in the neighborhood. This produces quasi-
continuous orientations and transforms regions with
periodic steps (of the size of about a voxel, intro-
duced by the discretization during the tomographic
reconstruction) into areas that are nearly flat, see
Fig. 1b. The remaining roughness is accounted for
by subsequent processing steps.

3.) Area and normal calculation The last pre-
processing step is to calculate the area and the
orientation of the surface normal of each trian-
gle20,22,23.
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2.2 Facet detection

The detection of facets can be realized by an eval-
uation of a weighted point density distribution on
a unit sphere (see Fig. 2). One of the best meth-
ods for facet detection seems to be the ‘Gaussian
Splat’ (GS) method –a discretized kernel density
plot24,25 extended to 3D– since it is computation-
ally efficient and accounts for uncertainties in the
point positions.

4.) The Gaussian splat method 3D Gaussian
splats are summed up at each point on the unit
sphere to create a facet probability distribution, see
Fig. 4. A Gaussian splat is a discrete sampled Gaus-

sian probability distribution function w ·exp( |r−p|
2

2σ2 )
up to a limiting radius R20. The contribution of
each splat is added to the previous result. This ori-
entation uncertainty is represented by the standard
deviation σ of the distribution function.

The angular uncertainty of the orientation ∆α
relates to σ (the parametric bandwidth): σ =
sin(∆α/180 · π). We chose ∆α and not σ as an
input parameter to the filter since ∆α is the more
intuitive property which can be easier estimated for
a given dataset.

Each splat is weighted by the corresponding relative
triangle area w such that the maximum of the Gaus-
sian function has the value of the relative weight.
The relative weight w is the ratio of the triangle
area to the total area of all triangles of the particle.
Weighting ensures that facets consisting of only a
few but big triangles leads to the same result as a
subdivided version of this mesh.

The limiting radius R was set to 2σ. Approximately
95% of the overall probability of the Gaussian func-
tion is covered up to this distance.a)

5.) Inversion of the 3D probability distribu-
tion The resulting image of the splatter process
(Fig. 4) resembles a 3D probability distribution.
For further evaluation of the regions around its local
maxima it has to be inverted such that the maxima
become minima. Then the regions of high proba-
bility density can be found using a watershed seg-
mentation.

6.) Identification of local minima The local
minima have to be identified. Only those that have
at least a depth of D are considered to discard in-
significant minima. The constraint D corresponds
to a minimum amount of area covered by triangles
with similar orientation that are necessary to form
what is later considered as a facet. This can be seen
as a minimum relative size that a potential facet has
to have.

7.) Segmentation of facets in the 3D prob-
ability distribution A region surrounding each

Figure 3:
Unrestricted and restricted watershed filter

2D slices from 3D watershed filter intermediate (top) and
final facet analysis result (bottom). The labels originate from
local minima of the Gaussian splat image (Fig. 4). On the
left the result of an unrestricted watershed filter introducing
a border (black) can be seen, on the right the output of a
restricted watershed filter (the border is allowed to grow as
well).

local minimum needs to be segmented, and trian-
gle orientations lying within one segment will be
regarded as part of a single facet. The segmenta-
tion involves assigning a label to each voxel in the
probability distribution. If every voxel is labelled
as belonging to a local/regional minimum, then all
triangles representing the particle will be assigned
to a facet. In most cases, however, it is desir-
able to divide the particle surface into both faceted
and unfaceted regions. This requires segmenting
the 3D probability distribution into ‘foreground’ re-
gions that are associated with local/regional min-
ima and a ‘background’ label that covers the angles
not associated with facets.

Constructing this segmentation is a delicate prob-
lem. The simplest approach would be to apply a
threshold to the probability distribution, however
this does not take into account the shape of the
probability distribution, which can vary consider-
ably around each facet. We adopt a multi-stage
approach consisting of a series of two or three wa-
tershed transforms from markers26,27.

• Assignment of all triangles to facets by using
only foreground markers. Each minimum is
used as a marker and regions grow until all
voxels are assigned to one region, left image of
Fig. 3. The flooding process is applied to the
inverted probability distribution.

• Boundary voxels from the first stage segmen-
tation are used as a background marker and
combined with the original markers originat-
ing from minima. Flooding is applied to the
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Additive Gaussian splats, vol-
ume rendered as a pair of
stereo images.b) The grey
values are mapped to a hue
colour map to visualize the
seven dense regions. Each
of these represents a possible
facet of the particle, its posi-
tion corresponds to the facet
orientation. The upper right
dense region has an extension
towards the missing 8th posi-
tion.

Figure 4: Facet probability distribution

A pair of stereo imagesb) vi-
sualizing the detected maxima
regions from the facet prob-
ability distribution shown in
Fig. 4 by a restricted watershed
filter (right image of Fig. 3).
The slice shown in the left im-
age of Fig. 3 is rendered at its
actual position.

Figure 5: Facet regions as derived from the facet probability distribution

A pair of stereo imagesb) show-
ing the sampled triangle ori-
entation points on the unit
sphere within the labels of
Fig. 5. The grey values, corre-
sponding to the additive point
weights w, are mapped to a
hue colour map to visualize the
dominant orientation within a
facet.
An aligned rhombic dodeca-
hedron (blue) and an octahe-
dron (green) are rendered in
the centre together with their
facet normals which intersect
with the point distribution.
These intersections are marked
in Fig. 1d.

Figure 6: Triangle orientation points sampled within the detected facet labels
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gradient of the probability distribution. The
resulting region boundaries lie at peaks in the
gradient. An algorithm that introduces a bor-
der26,27 has to be used in the first run to gen-
erate the boundary voxels, left image of Fig. 3.

• The regions produced in stage 2 are combined
with the boundaries from stage 1 to form a new
marker set and flooding applied to the second
derivative of the probability distribution. The
regions, right image of Fig. 3 and Fig. 5, are
bigger now since they reach up to peaks in the
second derivative, which is where the curva-
ture of the local distribution is highest, that
is further from the minima than the steepest
gradient (see e.g. Ref. 26).

These is a data-driven process for segmenting the
probability distribution. They allow labelled re-
gions to vary in size so that very flat facets, which
produce small but high zones in the probability dis-
tribution, and rough facets, which form broad but
low zones, are segmented accurately.

The resulting labels identify the extent of the facets
and the number of labels corresponds to the amount
of facets the particle has considering:

• The angular uncertainty of the triangle normal
orientation

• The minimum amount of triangles a facet has
to have

• The angular resolution of the probability dis-
tribution

2.3 Facet analysis

Now that the facets have been detected they ought
to be analysed. The following procedures allow to
determine these properties:

• Size of each facet (relative and absolute),

• Orientation of each facet,

• Angle between any two facet normals (interpla-
nar angles),

• Angle weight depending on the sizes of the two
corresponding facets.

8.) Construction of the facet analyser input
The point of each surface normal vector on the unit
sphere is sampled into an empty 3D image (all val-
ues 0) with the same norm as the probability dis-
tribution image. This is achieved by assigning the
voxel closest to the point position a grey value ac-
cording to the relative area of the corresponding tri-
angle. The grey value is the same as the weight w
used in the Gaussian splatter process. Again, each
point contribution is added to the previous result,
see Fig. 6.

9.) Analysing the labels The constructed input
is passed together with the facet labels (obtained
by the facet detection described above) to a label
analyser28. The analyser sums up all voxel values
of the constructed input within the region of each
label which yields the relative size of each facet.
The analyser also computes the centroid which ex-
presses the orientation of the corresponding facet.
The centroid seems to be an appropriate estimate
of the facet orientation since it ensures that larger
areas of the face with the same orientation have
a higher influence on the orientation than smaller
areas with slightly different orientation.c) The cen-
troid is a 3D point vector and in most cases does
not lie on the unit sphere because it is an average
of points on a curved surface, e.g. an even distribu-
tion of points on the whole unit sphere would lead
to a zero vector since the centroid would lie at the
origin. The more dispersed points the centroid av-
erages the farther it will be away from the surface
of the unit sphere. Therefore the inverse length of
the centroid vector can be used as a measure of how
dispersed the points of a label are and hence how
distinct a facet is.

10.) Calculation of the interplanar angles A
list of all the angles between any two facet normals
(facet angle) can now be computed. These angles
are often called interplanar angles although the an-
gles do not lie between two planes but between the
normals of two planes. A weight can be assigned to
each angle which characterizes e.g. the balance in
size of the two corresponding facets.

After the analysis of the facets, the resulting data
can be used as described below:

11.) Kernel density plot The list of angles can
then be plotted as a frequency distribution of oc-
curring interplanar angles either weighted or un-
weighted (see Fig. 8). A 1D kernel density plot25,29

accounts best for the angle uncertainty since it is
the equivalence of the Gaussian splatter in 3D, i.e.
the sum of overlapping 1D Gaussian functions. The
variance of the Gaussian functions (also called the
parametric bandwidth of the kernel) can be chosen
to reflect the angle uncertainty of the facet analysis.

12.) Visualization The result of the analysis can
be used to colour the triangles of the mesh according
to the facet label they belong. If the analysis distin-
guished faceted and unfaceted regions (i.e. double
or triple watershed instead of single watershed, see
point 7.)), unfaceted regions are rendered grey (see
Fig. 7). Minimal colouring according to the four-
colour theoremd), which also holds for many none
flat 2D surfaces30, was not implemented. Instead, a
colour lookup table (LUT) with few colours is used
such that a colour repetition only appears on par-
ticles with more detected facets than entries in the
LUT.
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2.4 Discussion

Using tomographic methods to determine faceting
of particles is much more reliable than using pro-
jections along specific orientations of the crystal as
applied in e.g. TEM studies. These often do not
even represent projections of the thickness of the
particle but merely its contour31. Additionally, no
knowledge about the symmetry of the crystal or
about the facets present is required. Furthermore,
the tilt series of which a tomogram is reconstructed
can be acquired about an arbitrary axis without the
need to tilt individual crystals to zone axes31. The
capability of analysing many particles is another ad-
vantage of the tomographic approach which makes
reliable statistics possible.

Discretization of real space into voxels naturally
leads to false faceting of any object owing to the
triangles introduced by the algorithm which cre-
ates the mesh representation whose orientations are
based on a cubic system, i.e. voxels. For exam-
ple, a simple ‘lego surface’e) only contains up to six
different face orientations, whereas the marching-
cubes surface contains up to 26 different face ori-
entations (see Sec. 2). Therefore, the mesh has to
be smoothed to adjust the orientations of the trian-
gles (which make up the surface) based on a larger
neighbourhood than used by the meshing algo-
rithm, i.e. 6-connectivity for a ‘lego surface’ and 26-
connectivity for a marching-cubes surface. Smooth-
ing leads to facet orientations other than those cre-
ated by the meshing algorithm. Smoothing adjusts
triangle orientations according to an average orien-
tation within a radius of influence of a smoothing
kernel, i.e. it extends the radius of influence from
the nearest neighbours (6|26-connectivity) to neigh-
bours farther away. The degree of smoothing can
be regarded as the length of a chosen radius of influ-
ence. If the radius of influence is chosen too small,
the influence of orientations characteristic for the
discretization is still present. If the radius of influ-
ence is too large, edges become round and in the
extreme the mesh approximates a sphere.

For instance, if particles of e.g. a hexagonal
crystal system are analysed and only angles typ-
ical for a hexagonal system are found, it can be
concluded that the degree of smoothing was suffi-
cient to actually remove the distinct faceting of the
raw marching-cubes surface, which is cubic. The
actual detection of facets shows that the degree of
smoothing was not too large. If particles with facets
of a cubic system are represented in the tomogram
(as presented in Sec. 3) the simple conclusion from
above for a sufficient degree of smoothing cannot be
used. However, the 26 orientations of a marching-
cubes surface are globally fixed to the coordinate
system of the voxel representation. Therefore, if
particles with facets typical for the marching-cubes
surface actually exist in the dataset (e.g. octahedra

as in Sec. 3.2 and Sec. 3.1) a different orientation
of these facets to the global coordinate system al-
lows to conclude that the degree of smoothing was
sufficient. This is, for example, visible in Fig. 1d
where the maxima of the LWPDs do not lie on the
26 symmetry points of the global coordinate sys-
tem, compared with Fig. 1ce which shows the facet
analysis result without smoothing.

In a performance test, about 2600 particles (from
around 100 up to around 100000 voxel) in a tomo-
gram of about 1000x1000x1000 voxel with an angle
resolution of ≈ 1.13◦ (corresponding to a sample
volume of 101x101x101 voxel) and an angle uncer-
tainty of 10◦ (corresponding to a radius of ≈ 30
pixel) were analysed within around 9 hours. There-
fore, in average a single particle was analysed within
around 100 seconds. The computer was equipped
with 8 cores of 2.5GHz (the analysis program was
parallelized to make use of the 8 cores). The needed
memory lay below 2 GB of RAM.

The presented image analysis is mainly based on
the following programs:

• Filtering and analysis: ITK16, VTK17,
Blender32, octave33, imagej34, awk35

• Visualization: Blender32, Paraview36, im-
agej34, gnuplot37, inkscape38, gimp39,
LATEX40

• Programming was mainly done in C/C++41,
python42, java43

The used operating system was Linux44 but most
programs are also available for other operating sys-
tems.

3 Applications of facet detec-
tion and analysis

In the following sections exemplary applications of
the described facet analysis are presented. First,
the analysis results of the exemplary particle from
Sec. 2 are given. This is followed by a demon-
stration of filtering many particles according to the
properties of their facets.

3.1 Determination of the crystal ge-
ometry by interplanar angles

It is possible to infer much about the geometry of a
crystal if the angles between its facet normals (in-
terplanar angles) are known. The facet extraction
and analysis methods described here allow statistics
of interplanar angles to be plotted as histograms
and dominant interplanar angles to be determined.
These angles can then be related to the crystal
structure. The strength of this method is to anal-
yse thousands of particles which leads to sufficient
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Figure 8:
Interplanar angle frequency plot of a single label

The plot shows the frequency of the interplanar angles α (the
angle between the normals of two facets) of the example par-
ticle from Fig. 1. The distinct peaks of the kernel density plot
(kh) correspond well to the geometry of the particle. The bar
histogram (bh) enables the estimation of the frequency ratios
(see text).

statistical power to overcome inaccuracies in indi-
vidual interplanar angle measures.

A single particle facet analysis can also be mean-
ingful if the resolution of the tomographic data is
high enough to reveal not only shape but also facets.
Taking the spinel particle from Fig. 1 as an example:
Its edges are only about 15 voxel long, but this is
already sufficient to form unambiguous facets. The
material (spinel, cubic structure, MgAl2O4) gener-
ally crystallizes as an octahedron formed by {1 1 1}
facets. However, the composition of particles may
vary locally. This can lead to crystals of different
shape. The imperfect example particle has seven
distinguishable disconnected facets. On one side
(left column in Fig. 7, [0 0 1] pointing up) it resem-
bles a square pyramid with oriented intergrowth.
One of the sides ((0 1 1) plane in the coordinate
system shown in Fig. 7) is distorted and cannot be
regarded as a facet. The other side (right column
in Fig. 7, [0 0 1] pointing down) can be idealized as
an extruded square pyramid or parallel intergrowth.
Additionally, the particle has some unfaceted tail

attached to the distorted side. The resolution of
the tomogram is not sufficient to resolve possible
facets here.

The facet analysis on this particle yields the re-
sults which are visualized in Fig. 7 depending on
the chosen filter parameter. The connectivity of
the facets detected is not checked, which means
that facets of similar orientation have the same label
(e.g. green facet in rows 0-3). This is appropriate
for most applications.

All seven facets are detected for an angular un-
certainty ∆α of up to 15◦ despite the imperfection
of the crystal. From 15◦ onwards, the roundness
of the edges (originating from the smoothing and
the low resolution) causes detected facets to merge
(Fig. 7, row 3). At ∆α = 24◦ only the lower and
upper part can still be distinguished, because the
roughness of the facets and the round corners cause
all other facets to merge at this high angular uncer-
tainty.

The interplanar angle statistics (obtained by the
facet analysis with an angular uncertainty of ∆α =
10◦) is plotted as an angle histogram in Fig. 8.
There are only 21 angles (corresponding to seven
facets) in this single particle analysis so the bar
histogram (bh) is very imprecise. Nevertheless, the
bar histogram allows the absolute number of angles
found in each range to be related to the relative fre-
quency, which the kernel density histogram (kh) is
related to. The kernel density plot is a more appro-
priate displaying method (as described in 2.2 11.)).
The variance σ of the additive Gaussian functions
can be adjusted to reflect the angular uncertainty
used in the facet analysis (in the plot σ = 4 =̂
FWHM ≈ 10◦). The peaks of kh in Fig. 8 do not
match the expected angles between {1 1 1} facets
(namely approx. 70◦ and 110◦). The three angles
(considering only seven facets) of 180◦ for oppo-
site faces are correct but carry little information.
Therefore, the presented crystal does not have the
geometry of an octahedron. Checking tables of cu-
bic interplanar angles45 yields {1 1 0} planes with

Figure 7: Facet analysis for different angle uncertainties
Image pairs visualizing the effect of different angle uncertainties (∆α) on facet detection of the spinel particle from Fig. 1
(shown from two sides). The mesh triangles belonging to a facet are coloured according to their label (the LUT consists of
ten colours). All mesh triangles not belonging to a facet are grey. Facets are not checked for disconnections which causes
the crystal inset to have the same facet labels as the main crystal. The analysis was done with an angular resolution of
≈ 1.13◦ (corresponding to a sample volume of 101x101x101 voxel) and a minimum facet size of D = 10 (except for row 0).
This means a facet is only detected if it has at least an area of about 10 pixel.

row 0 (∆α = 10◦): Only six facets are found if the the minimum facet size is set to D = 50. The size of the smallest facet
(row 1: cyan) is about 40.

row 1 (∆α = 10◦): Seven facets are found. The facets are not extending up to the particle edges. This is because of the
roundness of the edges which was introduced by the smoothing.

row 2 (∆α = 14◦): The seven facets are now bigger because the higher angular uncertainty allows to incorporate more
triangle orientations towards the particle edges.

row 3 (∆α = 15◦): Two facets cannot be differentiated any more (magenta) at this angular uncertainty and the smallest
facet (row 1: cyan) is not detected any more (now grey).

row 4 (∆α = 24◦): The angular uncertainty is now so large that only the sharp edge of the jolted octahedron suffices to
distinguish two sides.
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Figure 9: Bipyramid of {1 1 0} faces

Perfect construct of a {1 1 0} bipyramid within the {1 0 0}
cube showing the idealized shape of the particle from Fig. 7
with possible facets replacing the {1 1 0} edges.

60◦, 90◦, 120◦, 180◦, which fit the data. With the
absolute scale of the bar histogram it is now possi-
ble to estimate how often these angles occurred (by
moving the bar centre of bh to the peak of kh).

The values of Tab. 1 match well considering the
low resolution of the particle representation. This
means that the crystal evaluated here is not made
up of {1 1 1} facets but of {1 1 0} facets. It can
be constructed from a rhombic dodecahedron (con-
taining all {1 1 0} faces, reported to appear natu-
rally46 by removal of the (1 1 0), (1 1 0), (1 1 0) and
(1 1 0) faces, followed by an extension of the remain-
ing faces until the surface is closed again, see Fig. 9.

In order to rate which facets fit the particle repre-
sentation better, a perfect octahedron and a rhom-
bic dodecahedron were aligned to the representation
of the spinel particle and are rendered in Fig. 6.
The facet normal orientations of these two geomet-
rical objects were then draw in to Fig. 1d. The
shorter the distance of the marks towards a maxi-
mum in the underlying distribution, the higher its
rating: green (value 2), yellow (value 1) and red
(value 0). White is used for facets the particle does
not exhibit. The values for the octahedron sum up
to 6 and those of the rhombic dodecahedron to 11.
Therefore, the facets of a rhombic dodecahedron fit
better (see also Sec. A for a quantitative evalua-

tion) although a better resolution would of course
increase the confidence in this evaluation, but since
FIB-slicing is a destructive technique, the same par-
ticle is not available for a second, higher resolution
acquisition. In any case it enables us to explain the
general properties of the analysis.

It is possible that the round edges observed are
not smoothing artefacts but instead real features
originating from very thin facets (Fig. 9). These
would be {1 0 0} and {2 1 1} facets, which are also
reported to appear naturally46 and would replace
the edges of {1 1 0}. Their size would have to be
below the resolution limit because they are not ob-
vious in the mesh representation of the particle.

The minimum resolution required for facet detec-
tion can be estimated by the following argument: A
facet has to have at least an area of about 10 pixel
for it to be reliably detected.f) For comparison, the
facets of a 3x3x3 voxel cube have only an area of
about 1 pixel when meshed with the marching cubes
algorithm and smoothed with windowed sinc-filter.
A 5x5x5 voxel cube is just about big enough for its
facets to be resolved if it is aligned with the coor-
dinate system. If this is not the case it needs to be
slightly bigger (about 6x6x6) because the faces will
only be flattened by the smoothing filter.

3.2 Filtering particles according to
their facet characteristics

The facet analysis filter characterizes every single
label. Its results can be used to filter out labels
which do not fulfil a given criterion on any of the
characteristics the facet analysis yields, namely:

• Number of facets of each particle,

• Size of each facet (relative and absolute),

• Orientation of each facet,

• Angle between any two facets of a label,

• Angle weight depending on the sizes of the two
corresponding facets.

This property filtering is demonstrated on the
spinel particles from the FIB dataset, see surface
render in Fig. 10. The usual shape of spinel crys-
tals is octahedral46. In this dataset the crystals
often exhibit intergrowth or distortions as the ex-
ample particle in Fig. 7 (which was taken from this
dataset, see arrow b2). They can even be fully dis-
torted such that no distinct facets are formed. All

expected interpl. angle α α measured # ideally # measured
] (1 0 1)(0 1 1) = 60◦ 62◦ 6 6

] (1 0 1)(1 0 1) = 90◦ 88◦ 6 4

] (1 0 1)(0 1 1) = 120◦ 118◦ 6 5

] (1 0 1)(1 0 1) = 180◦ 174◦ 3 3

Table 1: Interplanar angles for single spinel particle (measured values are approx.)
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Figure 10: Labelled objects filtered according to
their facet characteristics
Figure showing the effects of filtering the spinel particles ac-
cording to different facet characteristics. A LUT with only
six colours was used for visualisation.
a: The result of the facet analysis of the separated and la-

belled particles. The facets are coloured arbitarily (not
the separated particles).

b: Only particles which have at least four facets with realtive
facet sizes larger than 5%.

these types are visible in Fig. 10a. The particles
were separated prior to facet analysis. The facets
are coloured arbitrarily with a LUT containing six
colours, as described in 2.2 12.). The rippled sur-
face of some facets is caused by alignment artefacts
(see arrows a1 and b1). The facet orientation un-
certainty ∆α was chosen such that most facets are
still detected despite this uneven facet surface. In
some cases, when the ripples are too pronounced,
the actual facets are broken up (see arrows a1). In
Fig. 10b, labels were removed by the use of filter cri-
teria to demonstrate filtering based on facet analysis
results.

Fig. 11 shows the angle frequency plot for all par-
ticles from Fig. 10a that have at least one facet big-
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Figure 11:
Interplanar angle frequency plot of multiple labels

The plot shows the frequency of the interplanar angles of
multiple labels, in this case the crystal particles from Fig. 10.
The distinct peaks of the kernel density plot (kh) correspond
well to the most likely geometry for spinel: An octahedron
formed by {1 1 1}. The bar histogram (bh) enables the esti-
mation of the frequency ratios (see text).

ger than 10% and no facet above 40 % or an artificial
facet introduced during FIB-slicing (21 particles,
628 angles). Two dominant peaks at about 70◦ and
110◦ are visible. These angles can be assigned to
those of actual octahedra formed by {1 1 1} facets45.
As in Sec. 3.1 the absolute scale of the bar histogram
allows for an estimation of the frequencies of these
angles, Tab. 2.

The error of the angle between adjacent facets
(i.e. facets sharing an edge, e.g. (1 1 1) and (1 1 1))
adds up to the angle error between facets that only
share a point (e.g. (1 1 1) and (1 1 1)). Therefore
the error of opposite facets (e.g. (1 1 1) and (1 1 1))
is the largest. Under these considerations the ex-
pected ratio of 12:12:4 fits roughly to the measured
ratio of 140:130:40. It can be concluded that about
10 to 12 crystals in the dataset form facets corre-
sponding to those of an actual octahedron. How-
ever, as shown in 3.1 there are exceptions. The
third most common facets reported by Alijev and
Jevsikova 46 are {3 1 1} which can form an angle of
about 145◦ corresponding to e.g. (3 1 1) and (3 1 1):
] (3 1 1)(3 1 1) ≈ 145◦, another peak in Fig. 11. The
huge number of possible combinations of different
facet orientations yields a nearly continuous spec-
trum of interplanar angles and creates a background
in the angle frequency plot for multiple labels.

It would also be possible to identify and filter
those particles that have an angle distribution as
e.g. in Fig. 8. This would allow automated creation
of statistics for common crystal geometries of spinel,
e.g. {1 1 1}, {1 1 0} and {3 1 1} as in Ref. 46.

expected interpl. angle α α measured # per oct. tot. # measured

] (1 1 1)(1 1 1) ≈ 70◦ 69◦ 12 140

] (1 1 1)(1 1 1) ≈ 110◦ 112◦ 12 130

] (1 1 1)(1 1 1) = 180◦ 172◦ 4 40

Table 2: Interplanar angles for multiple spinel particles (measured values are approx.)
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4 Conclusions

The algorithm developed allows identification of
particle facets in a 3D tomographic dataset. The
algorithm is able to deal with roughness and un-
certainty of facet representations, as can be intro-
duced by digitalization/discretization. The algo-
rithm does not rely on operator interactions which
enables automatized analysis of thousands of par-
ticles within a day and provides statistics to iden-
tify dominant facet characteristics while also finding
deviations from the overall trend as demonstrated
in the example applications (Sec. 3). The analy-
sis can also be applied to other labelled datasets
in which individual labels do not represent parti-
cles but other objects exhibiting facets or flat faces
such as e.g. precipitates in alloys47, foam cells48

or computed constructs such as tessellations49 or
magnetic domains50. If unambiguous characterisa-
tion of facets is needed, complementary 2D HREM
zone axis images or other methods for structural
characterization are necessary. The analysis results
have to be interpreted and evaluated by the scien-
tist employing the program and further knowledge
is necessary to restrict the whole set of possible so-
lutions.
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A Appendix

Quantitative verification whether the
example particle is more likely to con-
sist of (111) or (110) facets

The following evaluation was undertaken in order to
quantify whether the example particle is more likely
to consist of (111) or (110) facets, i.e. whether it
resembles more a perfect octahedron (referred to
as OCT) or a rhombic dodecahedron with only 8
facets (referred to as RHO). The missing 8th facet
was disregarded for the evaluation, i.e. removed
from OCT and RHO as visible in Fig. 12.

Two different measures were defined to rate
which of these two geometric objects fits the tomo-
graphic representation better. For the first mea-
sure (referred to as a-measure A) the angle be-
tween facet normals of the tomographic represen-
tation and the geometric object were evaluated and
summed up. This was done with the initial ori-
entation of the manually aligned objects to obtain
appropriate facet pair by calculating the difference

Figure 12: Geometric objects OCT and RHO and
the triangle orientation points from Fig. 6
The figure is similar to Fig. 6 except for the removed facets of
the geometric objects according to the facets existent on the
tomographic representation and that the optimized orienta-
tions are used (where OCT and RHO are slightly differently
oriented to each other).

vector between all normals of the tomographic rep-
resentation and the geometric object and subse-
quently choosing the pairs with the smallest dif-
ference. The resulting sum of the difference angles
is A ≈ 59.2◦ for the OCT and A ≈ 33.4◦ for the
RHO.

This measure was used to optimize the manually
oriented objects since it resembles the criteria used
during the manual process. The optimization was
achieved by applying the concept of “least squares”
with the a-measure as the objective function. The
optimization yields the following Euler angles for
the change in orientation: -3.2◦; 0.9◦; -0.7◦ for the
OCT and -0.7◦; -0.4◦; 0.9◦ for the RHO. This re-
duces the a-measure to A ≈ 58.0◦ for the OCT and
A ≈ 33.0◦ for the RHO. Therefore, the initial orien-
tation achieved manually was already quite good.

The second measure (p-measure P ) is a proba-
bility value calculated by integrating the underly-
ing probability density distribution (Fig. 4) within
a solid angle centred on each normal orientation of
the geometrical objects. The sum of these proba-
bility values then represent a value of confidence
for each fitted object, i.e. the higher the value
the more likely is the fit. For a solid angle Ω of
around 0.0004 sr (corresponding to a sample vol-
ume of 101x101x101 voxel for the probability distri-
bution), the p-measure decreases from P ≈ 0.1798
to P ≈ 0.1765 for the OCT and increases from
P ≈ 0.2102 to P ≈ 0.2103 for the RHO. The higer
value of the p-measure for the RHO confirms that
the RHO fits the tomographic representation better
than the OCT. The changes in the p-measure due
to the orientation optimization are so small since
the change in orientation is insignificant in regard
to the angle uncertainty (∆α = 10◦, limited by the
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resolution of the tomographic data) used for the
creation of the probability distribution.

The final conclusion is that the RHO fits the
tomographic representation of the particle signifi-
cantly better than the OCT with both measures,
thereby confirming the qualitative evaluation de-
scribed in Sec. 3.1.

Notes

a)3σ covers even 99%, but the increase in accuracy is cor-
related with a high increase in computation time. Tests
showed that a sampling radius of 2σ is sufficient for the
analysed tomograms and results in a reasonable compu-
tation time.

b)Looking behind the paper until three images are seen
makes the middle one appear three-dimensional.

c)Other possible values for the facet orientation could be
the unweighed centroid or the value of the maximum of
the label.

d)The four-colour theorem51,52 states that any map in
a 2D plane can be coloured, using only four different
colours, in such a way that regions sharing a common
boundary (other than a single point) do not share the
same colour.

e)The term ‘lego surface’ is used for the unmodified sur-
face of a voxel representation, i.e. the ‘lego surface’ only
consists of voxel faces (squares) that can have one of only
six different orientations.

f)This suggests a value D ≥ 10 for the minimum facet size
parameter of the analysis filter.
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von Spinellen (am Beispiel von Magnetit).
Kristall und Technik, 4(2):265–278, 1969. ISSN
1521-4079. doi: 10.1002/crat.19690040210.

[47] Satoshi Hata, Kosuke Kimura, Hongye Gao,
Syo Matsumura, Minoru Doi, Tomokazu Mori-
tani, Jonathan S. Barnard, Jenna R. Tong,
Jo H. Sharp, and Paul A. Midgley. Elec-
tron Tomography Imaging and Analysis of γ′

and γ Domains in Ni-based Superalloys. Ad-
vanced Materials, 20(10):1905–1909, 2008. doi:
10.1002/adma.200702461.

[48] Claudia Redenbach, Oliver Wirjadi, Stefan
Rief, and Andreas Wiegmann. Modeling of
Ceramic Foams for Filtration Simulation. Ad-
vanced Engineering Materials, 13(3):171–177,
2011. ISSN 1527-2648. doi: 10.1002/adem.
201000222.

[49] Allan Lyckegaard, Erik Mejdal Lauridsen,
Wolfgang Ludwig, Richard Warren Fonda, and
Henning Friis Poulsen. On the Use of Laguerre
Tessellations for Representations of 3D Grain
Structures. Advanced Engineering Materials,
13(3):165–170, 2011. ISSN 1527-2648. doi:
10.1002/adem.201000258.

[50] Ingo Manke, Henning Markötter, Christian
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