
1 

 

 

The kinetics of clustering in Al-Mg-Si alloys studied by Monte Carlo simulation 

 

Zeqin Liang
a
, Cynthia Sin Ting Chang

b
, Christian Abromeit

a
, John Banhart

a,b
 and  

Jürgen Hirsch
c 

 
a 
Helmholtz-Zentrum Berlin für Material and Energy, Institute of Applied Materials, Berlin, Germany 

b 
Technische Universität Berlin, Institute of Materials Science and Technology, Berlin, Germany 

c 
Hydro Aluminium Deutschland GmbH, Bonn, Germany 

 

 

Abstract 

The kinetics of clustering in Al-Mg-Si alloy is studied by Kinetic Monte Carlo (KMC) 

simulations. The simulations take into account the probability of vacancy jumping to nearest 

neighbour sites. This probability is calculated by considering both the activation energies for 

single vacancy migration and the difference of interaction energies before and after jumping. 

The simulations show that clustering in Al-Mg-Si is fast and takes place in three stages. In the 

initial stage, dimers, trimer and small co-clusters form. The number density of such clusters 

increases rapidly and solute atoms aggregate to those clusters until a maximum density value 

is reached after 2 min. In the second stage from 2 min to around 100 min, a decrease of the 

number density of small clusters accompanied by an increase of the fraction of solute 

contained in all the clusters can be observed. Finally, coarsening of some of the clusters by 

coalescence was found, hence further reducing the cluster number density, while the amount 

of solute atoms in the clusters remains constant. We discuss how robust the results are with 

respect to changes of the input parameters. 
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1. Introduction 

Alloys based on the Al-Mg-Si system are widely used because they can be artificially aged to 

medium strength whilst having good mechanical properties, good formability, weldability and 

corrosion resistance. 
[1]

 ‘Room temperature’ storage of these alloys, i.e. natural ageing (NA) at 

20°C, between solution heat treatment and artificial ageing (AA) often has a negative effect 

on AA and cannot be avoided in the industrial process chain. This ‘negative effect’ is thought 

to be caused by the formation of clusters during NA 
[2]

 and it kinetics and mechanism are not 

yet fully understood. Clustering is a fast reaction and microscopic techniques fail to track the 

earliest stages due to unwanted ageing already during sample preparation
[3] 

so that they are 

useful only for samples aged for a long time or at elevated temperatures 
[4,5,6]

. Some indirect 

methods such as Positron Annihilation Lifetime Spectrum (PALS), in-situ resistivity 

measurement or Differential Scanning Calorimetry (DSC) can track clustering kinetics 

already in very early stages, but the results are difficult to analyse and interpret 
[7]

.  

Simulation has proved to be useful for understanding reactions on the atomic scale. Recently, 

a realistic diffusion model based on vacancy migration has been incorporated into Kinetic 

Monte Carlo (KMC) modelling 
[8]

. This approach can provide details on the kinetics of 

precipitation, including nucleation
 [9]

, vacancy trapping, diffusion and stabilization of small 

clusters 
[10,11,12]

.
 
Clustering during NA in Al-Mg-Si alloys is a low-temperature reaction driven 

by diffusion and we use KMC simulation to understand its kinetics. The simulation is based 

on the diffusion of a single vacancy and by considering both diffusion activation and 

interaction energies. 
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2. Simulation setup and parameters 

Experiments have shown that the kinetics of clustering at ‘room temperature’ in Al-Mg-Si 

alloys is governed by the interaction of the quenched-in vacancies and solutes 
[7]

. At this low 

temperature, clusters should not modify the crystal structure of the base alloy, i.e. the solute 

atoms belonging to a cluster are still located on positions of the fcc aluminium lattice and the 

lattice constant is only marginally changed. The size of the simulation box is 25×25×25 unit 

cell (62500 atoms) and periodic boundary conditions are applied in all the directions. In order 

to simplify the model, only a single vacancy is generated, which is conserved throughout the 

simulation. The vacancy is thermally activated and can jump to nearest neighbour (NNB) sites. 

The jump frequency of the vacancy towards each of its 12 NNBs is  

,                 (1) 

where  is the jump attempt frequency,  is the activation energy, kB is Boltzmann’s 

constant and T the temperature. One part of  is the migration energy of the vacancy into 

a site i (i=Al, Mg, Si) which can be determined by using the theoretical diffusion activation 

energy  and subtracting from this the formation energy of the vacancy  , both given in 

Table 1 (strictly speaking enthalpy, but here p and V are constant). The vacancy is assumed to 

have formed during quenching and is preserved after.  further contains the difference of 

the interaction energies of the vacancy with its nearest neighbourhood before and after the 

vacancy jumps. Therefore, the activation energy  required for the vacancy to move from 

its initial position j to the atom position i of its NNB atom i is expressed as, 

 (2) 

Eq. (2) is an approximation, since we sum up pair interaction energies and therefore neglect 
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any interaction between such pairs.  denotes all the nearest neighbours of site j. 

and  are the interaction energies of a vacancy or atom with their NNB. The published 

values 
[13,14,15]

 of , , , and  are listed in Tables 1 and 2 and serve as input 

parameters for our calculation. It should be mentioned that the interaction energies are 

calculated by subtracting pairs of reference configurations. This choice implies that εAl-Al, εAl-V, 

εAl-Si and εAl-Mg are zero 
[16]

. 

A Monte Carlo Step (MCS) number can be converted to a physical time t by the following 

equation. 

,                    (3) 

where CV is vacancy concentration and N is the number of atoms in the simulated box. CV is 

calculated by 

 ,                  (4) 

where  is the Gibbs free energy of formation. Since by taking  = 

0.67 eV and  = 0.7 ,
 [17,18] 

a value CV=1.41×10
-4

 can be obtained and is applied for our 

simulation. The NA temperature is 293.15 K and the simulated material is Al-0.67Mg-0.77Si 

(at.%) which corresponds to alloy 6-8(F) of previous experimental work [3,19]. 10 simulation 

runs are performed and averaged. 

3. Results 

We define that a cluster is any concentration of 2 or more neighbouring solute atoms. Figure 1 

shows 3D mappings of Mg and Si atoms in clusters as obtained by KMC simulation for 

different selected times and as visualized using the software Vesta
[20]

. At the initial stage 
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before the simulation has started, dimers and trimers exist already in the computer-generated 

random distribution, see Fig.1a. After a short period of time, the number density of clusters 

visibly increases. However, the size of the clusters still remains small, as shown in Fig.1b. The 

clusters are still mostly dimers and trimers, although some solute chains can also be observed. 

With progressing NA, see Fig.1c, solute chains with an even larger number of solutes and 

clusters having more than 10 solute atoms are observed. After 100 min of NA, some of the 

clusters grow to more than 30 solutes, as shown in Fig.1d. After this, some big clusters 

coarsen and ordering within clusters is observed as displayed in Fig.1e.  

The evolution of cluster number density and the fraction of solute contained in clusters with 

respect to the total number of solute atoms in the alloy is given in Fig. 2. For the first 2 min of 

NA, the number density and the percentage of solutes in the cluster both increase. After 2 min 

of NA, the number density of clusters starts to decrease, but the fraction of solutes still 

increases, indicating that some clusters grow by coalescence with other clusters, while some 

solute from the matrix is still added to the clusters. After 100 min of NA, the fraction of solute 

reaches a maximum value of 73% and becomes saturated after. The number density of 

clusters continues to decrease, indicating that in this stage pure coarsening takes place and no 

more solute atoms are added to the clusters from the matrix. 

Size distributions of the clusters corresponding to the same times selected for Fig.1 are given 

in Fig. 3. The size distribution function of the clusters is defined as 

,                   (5) 

where Nx is the number of clusters containing x solute atoms and a is the total number of 

solute atoms in the simulation box. By this definition,  equals the fraction of solutes 
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in all clusters as given in Fig. 2.  

It can be seen from Figs. 3a and 3b that from the initial stage to 1 min of NA, the largest 

occurring cluster increases from 3 (trimers) to 15. On the other hand, the numbers of dimers 

and trimers increase from 14% to 21% and from 1.8% to 11% respectively. This means that in 

this stage rapid solute addition to clusters occurs and these grow continuously. Clusters 

containing ~25 solute atoms appear after 10 min of NA. After this, the contribution of dimers 

slightly decreases whereas that of trimers still increases, see Fig. 3c. After NA for 100 min, 

see Fig. 3d, clusters with more than 50 atoms start to appear while the contribution of clusters 

with less than 4 solutes decreases. The distribution profile after 1000 min of NA in Fig. 3e 

shows that 2 size distributions have appeared, forming a bimodal distribution: One located at 

2<x<30, the other at 30<x<65. There is no significant change of the frequency distribution of 

clusters with less than 20 solutes, while the number of clusters with more than 35 solute atoms 

has increased sharply, which again indicates that coarsening of clusters occurs from 100 min 

to 1000 min.  

 

4. Discussion 

Analysis of the initially random distribution shows that dimers and trimers already exist in the 

initial stage, see Fig. 1a. The higher the solute concentration, the higher the probability will be 

that two solutes are found on neighbouring lattice sites. The probabilities P2 and P3 of the 

occurrence of such statistical dimers or trimers, resp., in a binary system can be calculated 
[21]

 

,                  (6) 

,           (7) 
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where is the probability of finding a solute next to another solute and is the probability of 

finding a solvent next to a solute. In our simulated alloy,  and  equal to the solutes and Al 

concentration, 1.44% and 98.56% respectively. There are 12 possible positions for solutes 

next to each other and all 18 positions next to a pair of solutes have to be occupied by solvent 

atoms, hence the numbers in Eq. (6). Eq. (7) can be justified in an analogous way. From 

equations (6) and (7), a number density of dimers and trimers of around 10
26 

m
-3

 can be 

derived for the random state, which agrees well with the numbers found in Fig. 2 for the 

initial stage.  

Even after NA for an extensive period of time, e.g. t=1000 min, most of the clusters are still 

dimers and trimers. In the recent publication, Starink has successfully modelled the strength 

of Al-Cu-Mg alloys from the contribution of co-clusters 
[22]

, which appears reasonable since 

dimers and trimers are so abundant that they can play an important role. 

The clustering kinetics in Al-Mg-Si alloys is very fast even at ‘room temperature’ [3,7,19]. Two 

stages of clustering have been be found within the first 100 min of NA in both PALS and 

in-situ resistivity measurements, giving rise to pronounced changes of the respective signal. A 

low temperature clustering process (called ‘C1’) can be observed in DSC experiments with 

linear heating rates in the temperature range of 20-80
o
C. This process has an activation energy 

of 50 kJ/mol in an alloy with the same composition as in this simulation 
[23]

.
 
With this small 

activation energy, C1 can be easily activated at room temperature. From our simulation, a 

pronounced increase in the number density of clusters is found in the first 2 min of NA, which 

confirms that the kinetics of clustering in Al-Mg-Si is indeed fast. It is actually faster than the 

processes measured experimentally but one has to keep in mind that the conversion of Monte 
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Carlo time to real time using Eq.(3) relies on the vacancy density CV. We do not know how 

many vacancies are lost during quenching and there could be a continuous loss of vacancies in 

a real system. This would stretch the time axis of the simulation. 

The average jump frequency of the vacancy is about 2500 s
-1

 in our simulation. It is much 

higher than the vacancy jump frequency in pure aluminium, which is also simulated and is 

~600 s
-1

. The higher jump frequency in the alloy compared to pure Al is thought to be due to 

the presence of Si, which has a higher diffusion coefficient and lower activation energy for 

diffusion, see Table I. Together with the favourable interaction energy with vacancies, see 

Table II, this leads to faster kinetics of clustering.  

From the evolution of number density and fraction of solute atoms in clusters, the clustering 

process seems to have some similarities with nucleation, growth and coarsening in a 

precipitation process. Therefore, the number density of clusters is plotted on a logarithmic 

scale as a function of logarithmic time in order to compare it with classical nucleation and 

coarsening processes. In continuous nucleation, the nucleation rate can be expressed as 
[24][25]

  

,              (8) 

where N0 is the temperature-independent nucleation rate, QN is the nucleation activation 

energy, R is the gas constant. From Eq. (8) it follows that for constant T, of the number of 

nuclei formed per unit time in a unit volume is constant, i.e.  or . 

Figure 4a shows the fitting of this kind of relation to stage 1, i.e. for t < 2 min. From the 

number density, the value of the initial random cluster was subtracted and then fitted by a 

power law. We find that in stage 1, N  t
0.72

. When compared to classical nucleation theory 

where , it can be found that in stage 1 clustering is slower, but the difference is small. 
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In stage 2, growth of clusters is mainly by coalescence of clusters, while addition of solute 

still occurs. No classical growth theory can be found to describe this. In stage 3, the fraction 

of solute atoms in the clusters is saturated, indicating that the composition of the matrix has 

almost reached an equilibrium. Therefore, it is reasonable to verify whether the coarsening of 

clusters resembles Ostwald ripening. The relationship between number density and time in 

classical Ostwald ripening is given by Lifshitz, Wagner and Slyozov (LSW)
 [26]

 as 

, where a constant cluster volume is assumed. The same fitting procedure has been 

done for stage 3, see Fig. 4b. It is found that N  t
-0.08 

and therefore the decrease of the 

number density indicates that the coarsening process in the simulation is much slower (~12.5 

times) than predicted by LSW theory. Coarsening could be retarded by the attractive 

interaction between vacancies and both Mg and Si, see Table II. Vacancies are then trapped in 

the clusters most of the time, thus delaying the diffusion of solutes.  

In our simulations, input parameters are taken from the literature, see Tables I and II. As these 

parameters vary, the question arises how robust the simulations are. A physical time t is 

assigned to each Monte Carlo step by using Eq.(3), which contains the vacancy concentration 

CV, which in turn depends on the vacancy formation energy. The varying formation energies 

and entropies of vacancies provided by different sources 
[17,18]

 give rise to vacancy 

concentrations ranging from 3.6×10
-5

 to 2.7×10
-4

. This range, according to Eq. (3), leads to a 

rescaling of physical time. Moreover, it can be found that the average vacancy jump frequency 

is about 2500 s
-1

 in our simulation. However, if other experimental or theoretical values for 

the diffusion activation energy of a vacancy are used 
[27,28,29]

, the vacancy jump frequency can 

be as high as 60000 s
-1

 or as low as 300 s
-1

, leading to a pronounced rescaling of the physical 
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time appearing in Fig. 2, too.  

Size and composition of clusters are strongly related to the interaction energies as they are 

used to calculate the vacancy jump frequency, see Eq. (2). Different vacancy and solute 

binding energies can be found and this would influence the simulation 
[30]

. This can be 

illustrated by the example that the binding energy between a vacancy and a Mg atom has been 

reported to be both positive and negative in the literature. Compared with our assumption of 

attractive binding, based on Refs. 14,15,16, the opposite case (supported by Ref. 30) would 

make the diffusion of Mg more difficult, lower the content of Mg in clusters and result in 

smaller average cluster sizes. We avoid an eclectic and arbitrary choice of parameters by 

taking them from two well-documented sources only. 

 

5. Conclusions 

KMC simulations were performed to study the kinetics of clustering in Al-Mg-Si alloys using 

recently published input parameters. It is found that, 

1. different stages are observed, namely: stage 1 with an increase of the number density 

of clusters, stage 2, during which clusters coarsen while still attracting solute atoms 

from the matrix, stage 3 where clusters coarsen and no more solute aggregates. 

2. clustering is a fast process, with the most significant increase of number density taking 

place within 2 min, while the volume fraction of solute located in clusters occurs 

within the first 100 min, 

3. The results from the model depend on the input parameters, and therefore the 

predictive power of the simulation depends on their reliability. With our choice of 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 

 

parameters, the experimentally known situation is explained qualitatively, but 

comparison with experimental dada should not be taken to literally. 
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Figure and Table Captions 

 

Figure 1: Simulated atom distributions at selected times in Al-0.67Mg-0.77Si alloy. Pink: Mg, 

blue:Si. (a) initial state, (b) t=1 min, (c) t=10 min, (d) t=100 min, (e) t=1000 min. Al atoms 

and isolated Mg/Si atoms are not shown. 

 

Figure 2: Calculated cluster density and fraction of solutes in clusters as a function of natural 

ageing time. 

 

Figure 3: Size distribution of clusters after different natural ageing times. (a) initial stage (b) 

t=1 min, (c) t=10 min, (d) t=100 min, (e) t=1000 min. 

 

Figure 4: Fitting of power laws to the number densities of clusters in (a) stage 1, (b) stage 3. 

 

Table I: Kinetic parameters used for the calculations (taken from Ref. 13). 

 

Table II: interaction energies used for the calculations (taken from Refs. 14 and 15). 
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Figures 

 

 

 

 
(a)                                        (b) 

 
(c)                                              (d) 

 
(e) 

Figure 1: Simulated atom distributions at selected times in Al-0.67Mg-0.77Si alloy. Pink: 

Mg, blue:Si. (a) initial state, (b) t=1 min, (c) t=10 min, (d) t=100 min, (e) t=1000 min. Al 

atoms and isolated Mg/Si atoms are not shown. 
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Figure 2: Calculated cluster density and fraction of solutes in clusters as a function of 

natural ageing time. 
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(a) 

 
(b)                                                                 (c) 

 
(d)                                                                 (e) 

 

Figure 3: Size distribution of clusters after different natural ageing times. (a) initial stage (b) t=1 

min, (c) t=10 min, (d) t=100 min, (e) t=1000 min. 
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Figure 4: Fitting of power laws to the number densities of clusters in (a) stage 1, (b) stage 3. 

 

 

 

 

 

 

 

 

 

 

 



Tables 

 

Table I Kinetic parameters taken from Ref. 13 

 

 1.66×10
13 

/s 

 

 1.86×10
13 

/s 

 

 1.57×10
13 

/s 

 

 1.29eV 

 

 1.27eV 

 1.15eV 

 0.63eV 

 

 

Table II Chemical interaction energies (eV +favored -repulsive) taken from Refs 14, 15 

 

 0 

 +0.015 

 +0.025 

 0 

 0 

 0 

 +0.04 

 -0.04 

 -0.03 
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