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Figure 1: Cross-section through an aluminium foam
fabricaled by the powder metallurgical process [2]. The
foam has been formed in a mould to improve its me
chanical properties.

upon the now well-known foam drainage equation,
which has been extensively tested and verified for
aqueous foams [3, 4, 5, 6]. This nonlinear partial
differential equation describes the variation of the
liquid fraction of a foam (here we prefer the term
relative density, since the foam solidifies) with po
sition and time. In the present model this is com
bined with the equations of heat conduction, so as
to describe the motion of the freezing fronts. For
more details see [7], which treats a one-dimensional
foam, and includes effects such as bubble growth.

These two partial differential equations are non
dimensionalised and solved simultaneously, using
a finite difference representation. The boundary
conditions on the liquid are that there is no flow at
the edges of the sample and that the profile of rela
tive density is initially uniform - i.e. the foam has
the same wetness throughout. The conditions on
the temperature are that it is equal to the melting
temperature throughout the bulk and fixed at some
applied cooling temperature at the edges.

Mathematical Model2

The new science ofmetallic foams is growing rapidly,
in both the scientific research community and in
industrial applications. Several methods now ex
ist for foaming metals. One of these was invented
a few years ago at the Fraunhofer-Institute in Bre
men (I, 2]. The foam is fabricated from a metal
powder, often aluminium, which is mixed with a
blowing agent that is chosen to release gas close
to the melting point of the metal, e.g. 99.5% alu
minium powder and 0.5% titanium hydride powder.
This powder mixture is processed to give a dense
precursor material which is then heated up to the
melting point of the metal. As the metal starts to
melt, the blowing agent releases gas and the mix
ture expands. The resulting foam is then cooled to
freeze the structure, resulting in a solid foam. Fig
ure 1 shows an example of such a foam, which can
easily be fabricated inside a mould, leading to the
possibility of reduced post-processing.

After the expansion phase therefore, the foamed
liquid metal undergoes simultaneous liquid drainage
and cooling. The liquid drainage, due to gravity, in
troduces inhomogeneity into the structure, which is
generally undesirable in view of the uniform prop
erties required in the solidified structure. If it con
tinues for too long, rupture and collapse ofthe bub
bles will occur. These mechanisms are prevented
if the freezing process is rapid enough. Freezing
fronts move inwards through the sample, arresting
the drainage process. In the model described below
we estimate their velocity in relation to the veloc
ity of drainage. Figure I shows that uniform foams
can currently be fabricated. We wish to define the
physical and material parameters which will allow
other materials to be foamed with this process.

1 Formation Process

We model the process ofsolidification and drainage,
assuming that the bubble melt has been fully ex
panded. The mathematical representation is based

977



5 Outlook

A great deal of effort is being expended in apply
ing the technology ofmetallic foams in the automo
bile industry and elsewhere. Exciting opportunities
also exist in the field of microgravity research [8],
where the reduced effect ofgravity will make these
foams easier to fabricate.
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Figure 2: A cube of solidified foam from which a quar
ter segment has been removed to show the distribution
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3 Numerical Results
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where LJ, P, lC, 8";1 and 11 are the latent heat of
freezing, density, thermal conductivity, melting tem
perature and viscosity of the liquid metal, L is the
length of the foam, <1>1 is the initial relative density,
and g is the acceleration due to gravity.

L 2 LJP g fX{J < I
KE>critll
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