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The abstracts collected in the last issues of this newsletter are a nice demonstration that
within the Network Community there is considerable interest in the impact of relativistic
effects on the electronic structure. Obviously, spin-orbit coupling plays a prominent role in
magnetic solids because on one hand it gives rise to a large number of interesting phenomena
and on the other it poses a big challenge to the basic formalism as well as implementation.
The latter is caused by the demand that both spin-orbit coupling and magnetism have to
be accounted for at the same time. The most advanced Hamiltonian, commonly used today,
which meets this requirement is briefly described here. It is demonstrated for the conductivity
tensor how simple symmetry considerations allow to predict the consequences of the interplay
between spin-orbit coupling and magnetism. Recent calculations for the DC conductivity,
Kerr-rotation and magnetic X-ray dichroism for various transition metal systems indicate
that the above mentioned Hamiltonian supplies a sound basis for understanding all these

phenomena giving (in general) a quantitative description of them.

3 Dirac Hamiltonian and band structure schemes

As already pointed out in 1973 by Rajagopal and Callaway, treating magnetism in a proper
relativistic way, by extending the original Hohenberg-Kohn-Sham density formalism, leads to
a current density formalism with the expectation value of the four-current density operator
as the central quantity. Unfortunately, this approach seems to be — at least for the moment —
too ambitious. Therefore, in order to describe relativistic effects and spontanous magnetism
on an equal footing one has to use an extension of the non-relativistic spin-density-functional
formalism in the form originally suggested by McDonald and Vosko [1]. The corresponding

Dirac-Hamiltonian has the form:
1 -
Hp = 50V o 5 (B = 1)+ Vir(r) + Velr) + Vigia 1), (1)

with «; and 8 being the standard Dirac matrices and Vg(r) the Hartree potential. The

exchange correlation potential consists of a spin averaged- and a spin-dependent part, with
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the latter given by:
et (1) = o B(r), )

where m is the spin magnetisation density. Obviously, any explicit coupling to the orbital

Vspin(r) - /80’ '

degree of freedom of the electrons is ignored in the potential terms of the above Hamilto-
nian, but it would be present in the framework of a more general current density functional

formalism.

As demonstrated by Feder et al. [2] and Strange et al. [3], when dealing with an isolated
spherically symmetric potential well (i.e. V(r) = V(r) and B(r) = B(r)) the most important
consequence of Vi, (r) is that the solutions W,(r, £) of the above Hamiltonian have in

general no unique spin angular character. Fortunately, the summation in

gaa(r, £) xar(F)

W B) = Y (e ) =Y ) 6
A A ZfA/A(T, E) X_A/(I')

where x(r) are the spin-angular functions and £A = (£k,u) are relativistic quantum

numbers, is restricted to ' = p and &' = Kk, —k — 1 (i.e. p1/2, — P3j2,u dsja,n — dsjaps - - )

which seems to be sufficient for all interesting cases.

Starting from W, (r, /) as the solution of the single site problem spin polarized relativistic

(SPR) versions of the LMTO- and KKR-methods have been developed by various groups.

4 Symmetry considerations

A direct consequence of the Hamiltonian in Eq. (1) is that the symmetry of a system depends
on the direction M of its magnetisation M or equivalently on the direction of the effective
magnetic field B in Eq. (2). Obviously, this also applies to the irreducible part of the Brillouin
zone that is determined by the corresponding magnetic point group. Since symmetry imposes
restrictions on the form of any equilibrium property tensor, again this will depend on M.
Symmetry restrictions on transport property tensors have been discussed by Kleiner [4] in
a general way. Here it is sufficient to consider the restrictions due to the Laue group which
emerges from the magnetic space group by replacing every translation by the identity and

every improper rotation by its proper counterpart.

For the frequency dependent conductivity tensor o (w) of a cubic system one gets for example

A

for M[001]:

0'((.{)) = _ny Oz 0 (4)
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and for M[110]
Oz Ony  Ous
ow)=| o 0w —0om |- (5)
—Ozz Ogzz Oz
Here one should note that the reduction in symmetry due to the magnetisation that is
manifested by Eqs. (4) and (5) occurs only if spin-orbit coupling is present. If one could
switch off spin-orbit coupling for a spin-polarized system its properties would not depend
anymore on the orientation of the magnetisation and for this reason its symmetry would
be that of the corresponding paramagnetic state. Thus it is magnetisation together with
spin-orbit coupling that leads to a symmetry reduction compared to the paramagnetic case.
The extent to which this reduction in symmetry takes place is determined by the orientation
of the magnetisation. However, whether the spin-orbit induced property is observable or
not still depends on the magnitude of the magnetisation and the strength of the spin-orbit

coupling.

5 Galvano-magnetic properties
of disordered alloys
The dependence of the conductivity tensor o(w = 0) on the spontanous magnetisation M

of a system gives rise to the so-called galvano-magnetic phenomena. According to Eq. (4)

the corresponding resistivity tensor p = ! for a cubic system with M[OOl] has the form:

pr —pa 0
p=|pu pr 0 |. (6)
00 p

Obviously, the off-diagonal element pg can be seen as a direct measure of the anomalous
Hall resistivity (AHR). The so-called spontanous magneto-resistance anisotropy (SMA) on
the other hand is defined as the ratio

Ap _pr=r1 )

p p
with the isotropic resistivity p = 1/3(2pL + py|).

An adequate prescription for calculating the residual resistivity p of a disordered alloy sys-
tem at T' = 0K or the corresponding conductivity o is supplied by the Kubo-Greenwood-
equation:
h , .
Oy = Tr <Ju ImG™* (Er) j, ImG™ (Er) > ) (8)

7r‘/;ryst

conf.

Here j, is the p-th spatial component of the electronic current density operator j, G* is the
single particle Greens function at the Fermi energy Fr and < ... >cons. denotes the atomic

configuration average for a disordered alloy.
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Butler [5] has worked out in detail how this expression can be evaluated within the framework
of the non-relativistic KKR-CPA formalism. As we have seen above the non-isotropic form
of & stems from the interplay of magnetism and spin-orbit coupling. Therefore, in order
to account for galvano-magnetic effects Eq. (8) has to be evaluated within a relativistic

framework. Accordingly, GV is:

GHrx' B) = Y Zu(r,B)ran(E) 235 (r', E) 9)

AN/

— D Za(re, B) JX (x5, B),
A

with 7pp the scattering path operator and Z, (Jp) the regular (irregular) solution of the

single-site Dirac equation (see Eq. (1)) normalized according to the scattering theory.

The proper relativistic form for the current density operator j is eca. However, when using
this expression in the atomic sphere approximation (ASA) the electronic wavefunction in
the interstitial region may not be accurate enough. This problem can be circumvented by

using one of the following transformations of the matrix elements

<on(B)lacalou(B) > = s <a(B) Y ay (10)
—I—Ea cay — %zﬁ(a X ay), [oa(E') >
2
T (E+ /22 — (F + 2)2)? (1)

x|ic < oa(E)|VV -ay + B0.V B - a\|pa(E) >
—(E — E') < 6a(B)[Va - ay — iBBo.(a x ay):|¢a (') > | |

with a, being a polarisation vector and B = Bz has been assumed.

The above scheme has recently been applied for the first time to the fec-alloy system Fe,Ni; _,.
[6]. This system was chosen because it possesses one of the highest SMA and is therefore of
considerable technological importance. As Fig. 1 shows, the calculations reproduce satisfac-
torily the variation of the SMA with concentration. The most important reason for the much
higher theoretical values compared with experiment seems to be the fact that the calculated
isotropic resistivity p (not shown here) is to the same extent smaller than the experimental
one. This is not unexpected because our calculations account only for the contribution to
p due to scattering events caused by chemical disorder; any other sources such as e.g. short

range order or grain boundaries are ignored.

In addition one should note that the calculations have been performed for M[OOl] while
the experimental data are for polycrystaline samples. However, as can be seen from mea-

surements on single crystals, this contributes only neglegiblely to the deviation in Fig. 1.

In Fig. 1 results for the AHR are given in terms of the so-called Hall angle pg/p. Obviously,

the agreement with experiment is comparable with that in the case of the SMA.
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Figure 1: Top: Spontanous magneto-resistance anisotropy (SMA) (p — p1)/p of the disor-
dered alloy system fcc-Fe,Nij_, for T'= 0K. Bottom: Anomalous Hall resistivity (AHR)
of fce-Fe,Ni;_, expressed by the Hall angle pg/p.

These calculations allowed to study the validity of various assumptions made within previous
simple models for the SMA and AHR. For example, it turned out that calculating the SMA
based on spin-resolved density of states at the Fermi energy together with a global parameter
representing spin-orbit coupling is of rather limited usefullness. A test of the so-called
two-current model common to all previous approaches is performed next. Evaluating the
relevant matrix elements in the V-form (see Eq. (10)) it was found that the additional terms
that allow for spin-flip scattering events are by a factor of 100 smaller than the V-related
part. This means that hybridisation of states with different spin character due to spin-orbit

coupling is by far the most important source for the SMA and AHR.

Finally, one should emphasize that the results presented here clearly demonstrate that the



spin only Hamiltonian in Eq. (1) contains all the relevant physics to allow for a proper

description of the SMA and AHR.

6 Magneto-optical Kerr-effect

Any material with a non-diagonal conductivity tensor o (w) will in general turn incoming
linearly polarised light into elliptically polarized one. If this property of o(w) is — at least
partly — due to the magnetisation then the effect observed in reflection is called magneto-
optical Kerr-effect. The complex Kerr-angle ¢x = 0x + iex combines the Kerr-rotation
angle Ok of the polarisation ellipsis, with respect to the original polarisation vector, and its
ellipticity ex. For a system with at least 3-fold symmetry (i.e. trigonal, hexagonal, tetragonal
and cubic) and the magnetisation as well as the incoming beam along the surface normal z

(polar geometry) the complex Kerr-angle ¢x is given by:

_Tey . (12)

95{ =
.

In principle the version of the Kubo-Greenwood-equation (8) for finite frequencies could be

used in a straightforward way to calculate o(w) and from that ¢x(w). Alternatively, one

can calculate the absorptive parts of o,, and o, using the expressions:

W _ T - ) . ) -

o) = nkogupied | < k|- [nk > |* +] < n'k| js [nk > [*] 8w — w)(13)
n! k unoccupied

9 Te . 2 . 2

o® = D | < n'klj-nk > > = | < n'k| js [nk > |*] 6(wn — w)(14)

n k occupied
n’ k unoccupied

and determine the corresponding dispersive parts by a Kramers-Kronig transformation. With
j+ = jo» *1j, Egs. (13) and (14) emphasize that o)) and O';Qy) can be viewed respectively
as the average and difference of the absorption coefficients for the left and right circularly

polarized light.

The expressions in Eqs. (13) and (14) represent only contributions due to k-conserving inter-
band transitions (n # n’). The intraband transitions are conventionally taken into account
in a phenomenological way by the so-called Drude term. Fortunately, this contribution to o

can safely be neglected for w 2 1.5 — 2 eV.

The form of & given in Eqgs. (4) and (5) expresses the fact that changing the orientation of M
from [001] to [110] the true symmetry of the system changes from tetragonal to orthorhombic.
From this one can expect a corresponding anisotropy for the Kerr spectra 0 (w). As can be
seen in Fig. 2 this anisotropy is found to be completely neglegible for fce-Co [7]. This finding
is in full agreement with the experimental data of Weller et al. [8] for Co-films with [001]- and

[110]-orientation. Obviously, spin-orbit coupling in fcc-Co is responsible for the Kerr-effect
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Figure 2: Top: Kerr-rotation angle O for fcc-Co with M[001] and M[110]. The theoretical
spectra for both orientations practically coincide. For the experimental curves only small
differences have been found. Bottom: Kerr-rotation angle 0 for hcp-Co with M[OOOl]
and M[1120].

but it is too weak to produce any significant anisotropy for i (w). This situation is similar
to the spin-orbit induced field gradient in cubic magnetic solids. This phenomenon, like the
Kerr-effect, is a direct manifestation of the reduced symmetry compared to the paramagnetic
state. However, even for 5d-elements in an Fe-matrix no significant anisotropy for the field
gradient could be detected so far. For hcp-Co the situation completely differs from that for
fcc-Co. Here, because of the crystal structure the optical properties are anisotropic even for
the paramagnetic state. Thus the anisotropy induced by the magnetic state is superimposed
onto that due to the crystal structure. For this reason, in contrast to fcc-Co, there is a clear

anisotropy present as can be seen in Fig. 2. Again the experimental data were obtained by
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Figure 3: Kerr-rotation angle 0 for FePt for various orientations. KO stands for Kiibler,

Oppeneer et al.

Weller et al. for films with [0001]- and [1120]-orientation. In line with the anisotropy of fx
an anisotropy for the total magnetic moment and the hyperfine fields is found (0.004 pp and
5.7 kG compared to the experimental values 0.008 5 and 8 kG, respectively). In both cases
the anisotropy is due to their orbital parts which occur — like g — due to the spin-orbit
coupling. However, 0 gives more detailed (at least partly) energy resolved information on
the anisotropy while the orbital moments and hyperfine fields are integral properties of the

occupied states.

The hep-Co could be viewed as a simple layered structure system. For this reason one can
expect that the anisotropy of 8 is more pronounced for a true layered structure, e.g., for
the compound FePt in the CuAu-structure. This indeed can be seen from the theoretical
spectra in Fig. 3 [9]. Remembering the role of the Drude contribution for w $1—2 eV our
results for the [001]-orientation are in fairly good agreement with the experimental results
of Weller et al. It seems that so far the preparation of the corresponding films for the [110]-
orientation has not been successful. In Fig. 3 we have included the theoretical results of
Kiibler, Oppeneer et al. [10]. This group is using the scalar-relativistic ASW and accounting
for spin-orbit coupling in the variational step, while the results presented so far were obtained
using the SPRLMTO-ASA. Because the spectra agree as far as one might expect for two
completely different calculations (using presumably slightly different atomic radii, lattice
constants and lifetime parameters) one can conclude that: i) for calculating Kerr-spectra
and other spin-orbit induced properties it is in general not necessary to use the approach
based on the Dirac equation (see Eq. (1)) — even for systems containing heavy elements
like Pt, ii) because in the ASW-calculations of Fig. 3 the interstitial region is treated more

accurately it is obvious that evaluating the matrix elements of j in the V-form essentially
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cure the problems with the a-form.

Furthermore, using Eq. (10) it was found — as before for o (w = 0) of Fe,Ni;_, — that spin-flip
transitions play only a minor role (= 1%). Thus the estimate (/2 10%) often found in the

literature seems to be unrealistic.

Finally, it should be emphasized that statement i) does not mean that the Hamiltonian in
Eq. (1) does not have any advantages compared to the variational treatment of spin-orbit
coupling. For example treating alloy systems within the CPA would be quite cumbersome
using the latter approach. Furthermore future developments in relativistic density functional

theory will presumably provide a natural extension of the Hamiltonian in Eq. (1).

7 Magnetic X-ray dichroism

In recent years various experimental groups have demonstrated that the magneto-optical
Kerr effect (MOKE) can also be observed in the X-ray regime. This means that although the
nature of the initial states completly changes — tightly bound core states versus the itinerant
valence band states for the optical regime — the physics remains the same. Much easier
than observing the MOKE in the X-ray regime is however the corresponding absorption
experiment. For a discussion of that experiment it is obviously sufficient to look at the
absorptive parts of the elements of . From the form of & in Eq. (4) one can easily see
that different kinds of dichroism i.e. dependencies of the absorption on the polarisation of
the radiation may occur. The occurence of o, gives rise to the circular dichroism meaning
that the absorption coefficients for left and right circularly polarized X-rays, py and p_,
respectively, are different. From Eq. (13) and (14) one easily sees that ps o ofl) + Uffy).
The difference between o,, and o,., giving rise to the SMA for w = 0, leads to a linear
dichroism, i.e. to different absorption coefficients u, for X-ray linearly polarized parallel
to l\A/I(,uH x (1)) and perpendicular to M (p; o« o())). Egs. (4) and (5) also demonstrate
that one can have different kinds of linear dichroism. The one just described occurs if M is
fixed and the polarisation vector is changing. But there is another one for the polarisation

fixed and the magnetisation rotated, because for example 0(1)(M [001]) may differ from

zZZ

A

o(D(M [110]).

zz

A very flexible scheme to calculate the absorption coefficient )\ was developed some years
ago based on the SPRKKR-method. Alternatively, one can also use the SPRLMTO-method
to calculate p) in analogy to Eqgs. (13) and (14) from

Uy X > | < nk|j_ i > |* §(wni — w). (15)
K wmocempied

As stated above only the nature of the initial state has changed from a Bloch state |nk >

to a core state | >. This has the important consequence that the resulting spectra are not
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Figure 4: Top: Circular dichroism Ay = p~ — ut at the Lyz-edge of Cu in the multilayer
system Cob/Cud. Theory: full line, experiment: dashed line. Bottom: Matrix elements for
the various 2p;, — 4s(3d); s-transitions with p = +1/2 and ¢/ = —1/2 at the Lg3-edge of
Cu.

anymore linked to the so-called joint density of states but just to the density of unoccupied
states. As a result, the interpretation of the resulting spectra is tremendously simplified.
Furthermore, again due to the nature of the initial state, the MXD provides a component
specific probe of magnetism. This property has been used during the last years for a rapidly
increasing number of studies on diluted and concentrated alloys as well as multilayer systems.
As an example for such investigations Fig. 4 shows the circular dichroism at the L, 5-edge of
Cu in the multilayer system Co5/Cu4. Here the difference Apu of the absorption coefficients
for left and right circularly polarized radiation, 4~ and u™, resp., has been used as a measure
for the dichroism, with the step at the absorption edge normalized to 100. Although the
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dichroism signal is quite small (of the order of 1 %), it nevertheless reflects the polarisation
of the Cu d-band states by the adjacent Co-layers. In most cases Ay can be viewed as an
energy-resolved probe for the spin-polarisation of the final states. From the same sign of Ap
for Cu and Co (not shown here) in Cob/Cu4 one can therefore conclude that the Cu- and
Co-moments are aligned in parallel — in accordance with the results of the bandstructure
calculation. Using so-called sum rules (see references in [11]), which supply a basis for the
above interpretation, a spin magnetic moment of around 0.014up could be deduced from
the experimental spectra for Cu. This is in good agreement with the theoretical result
(0.0137up). However, one has to keep in mind that one only gets an average value that way.
For Co5/Cu4 this means an average for the two inequivalent Cu-layers. In more complex
situations as for example Co2/Pt7 one has more inequivalent layers and may encounter

corresponding partial spectra with different sign.

The reliability of the sum rules to deduce spin as well as orbital moments from MXD-
spectra has recently been investigated in detail [11]. Comparing calculated moments of
multilayer systems with moments deduced from corresponding MXD-spectra using the sum
rules differences up to 40 % were found. For the orbital moment, for which the application
of the sum rules is somewhat simpler, the ratio of the calculated and deduced values was

found to be close to 0.67 in all cases.

Although the sum rules applied to experimental spectra gave so far reasonable estimates
for the spin and orbital moments in a great variety of systems one should emphasize that
these estimates strongly depend on the filtering of the MXD-spectra from the raw data i.e.
on the background subtraction. On the other hand one should also emphasize that one of
the basic assumptions in deriving the sum rules, namely energy independent radial matrix
elements, is rarely fulfilled. Fig. 4 shows corresponding data for the L;s-edge of Cu. As
one can see the most important matrix elements vary nearly by 50 % in the energy range
(K — Er) =0 — 10eV. In addition one finds that the p — d-matrix elements are much
larger than those of the p — s-transitions. This is, of course, primarily caused by the fact
that the relevant 2p— and 3d—radial wavefunctions are nodeless while the 4s—function has
three nodes. As a consequence of this the MXD-spectrum in Fig. 4 is dominated by p — d-
transitions although for Cu the s—, p— and d—densities of states above the Fermi level are

of the same order of magnitude.

8 Concluding remarks

The linear response conductivity tensor o (w) has been used to demonstrate close relations
between various phenomena which at first sight seem to be quite different in nature. Consid-
ering the symmetry properties of o (w) it becomes obvious that it is spin-orbit coupling to-
gether with spin-polarisation that gives rise to the spontanous magnetoresistance anisotropy,

the anomalous Hall resistivity, the magneto-optical Kerr-effect, the magnetic X-ray dichroism
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and so on. Of course dealing with spectroscopies that are influenced by surface properties —
as for example the spin- and angle-resolved UPS — the situation may be more complicated

and the symmetry considerations may have to be extended accordingly.

The examples presented here demonstrate that used here spin-only Dirac-Hamiltonian pro-
vides a firm basis for a theoretical investigation of the various spin-orbit induced phenomena
in magnetic solids. However, there are also clear indications coming primarily from MXD-
spectroscopy of shortcomings to this approach. These might be linked to the observation
that the calculated orbital moments in general turn out to be too small. Obviously further

work in that direction needs to be done.
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